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1. Introduction.

This article is a set of complimentary notes for the talk given by the author at
the Higgs Bundles and Harmonic Maps Workshop in January 2015. Our goal is to
provide the reader with a brief summary of some important properties of semisimple
Lie groups, and how they relate to Riemannian symmetric spaces. Emphasis will be
given to the case when the symmetric space is of non-compact type. To be concise,
most of the proofs given here are lacking in detail, and are there mainly to indicate
the main ideas used to obtain the stated results. Most of the material here is from
Chapter 2 of [1], the first six chapters of [2], and Chapters 2 and 3 of [3].

2. Lie groups introduction.

In this section, we will recall some Lie group basics, starting with the definition.

Definition 2.1.

(1) A Lie group G is a real analytic manifold with a group structure such that
multiplication and inversion are real analytic diffeomorphisms.

(2) A Lie group G is complex if it is also a complex manifold, and multiplication
and inversion are holomorphic.

(3) The Lie algebra of G, denoted g, is the tangent space at the identity of G.
(4) Let G1 and G2 be two Lie groups. A real analytic map f : G1 → G2 is

a Lie group morphism if f is a group homomorphism and a real analytic
immersion.

(5) A Lie subgroup H of a Lie group G is a subgroup equipped with a real
analytic structure so that the inclusion map of H into G is a morphism of
Lie groups.

As of now, g is simply a vector space. Shortly, we will equip g with an algebraic
structure that captures the infinitesimal group structure of G. In the case when G
is a complex Lie group, g comes equipped with a natural complex structure. A Lie
group morphism f : G1 → G2 induces a R-linear map df : g1 → g2, which is also
C-linear if G1 and G2 are complex Lie groups and f is holomorphic.

The simplest example of a Lie group is R equipped with addition and the usual
real analytic structure. To study more general Lie groups, it is often useful to con-
sider Lie group morphisms of R into G. These are called one parameter subgroups
of G, and are analogous in Lie theory to geodesics in Riemannian geometry. One
can first see this analogy from the following proposition.

Proposition 2.2. The set of one parameter subgroups in G are in bijection with
g.
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Proof. If γ is a one parameter subgroup, then γ(0) = id, so γ′(0) ∈ g. This gives
us a map φ from the set of one parameter subgroups to g. To prove that φ is
surjective, one needs to construct, for every X ∈ g, a one parameter subgroup γ
such that γ′(0) = X. Observe that every vector X ∈ g generates a non-vanishing,
left invariant vector field V on G by pushing forward X to every point in G using
the left action of G on itself. Let γ be a flow line of V through id, and note that
γ′(0) = V (id) = X. Moreover, for every s ∈ R, one can easily use the left invariance
of V to show that the curves η(t) := γ(s)γ(t) and ω(t) := γ(s+t) are flow lines of V
with the same initial condition. This implies that γ is a one-parameter subgroup,
so φ is surjective.

To prove φ is injective, observe that for any one parameter subgroup γ, the
vector field γ′(t) along γ has to be invariant under left multiplication by γ(s) for
s ∈ R, so it can be extended to a left invariant vector field on G. Thus, it has to be
the flow line of the unique left invariant vector field V on G with V (0) = X. �

Notation 2.3. By the above proposition, we can use the following notation. For
any X ∈ g, let γX be the one parameter subgroup so that γ′X(0) = X.

Definition 2.4. The exponential map, exp : g→ G, is defined by exp(X) = γX(1).

It is clear from this definition that γX(t) = exp(tX).

Example 2.5. Let F = C,R. Here, we list several examples of common Lie groups,
along with their Lie algebras, that will be used in the rest of this article.

(1) G = GLn(F ) := {M ∈Mn×n(F ) : M is invertible}.
g = gln(F ) = Mn×n(F ).

(2) G = SLn(F ) := {M ∈ GLn(F ) : det(M) = 1}.
g = sln(F ) = {M ∈ sln(F ) : tr (M) = 0}.

(3) G = SU(n) := {M ∈ SLn(C) : MM∗ = id}.
g = su(n) = {M ∈ sln(C) : M +M∗ = 0}.

(4) G = SO(n) := {M ∈ SLn(R) : MMT = id}.
g = so(n) = {M ∈ sln(R) : M +MT = 0}.

(5) G = Bn(F ) := {M ∈ SLn(F ) : M is upper triangular with 1’s along the diagonal}.
g = bn(F ) = {M ∈ sln(F ) : M is upper triangular with 0’s along the diagonal}.

In all of the above, the exponential map is exponentiation of matrices, i.e,

exp(M) =

∞∑
i=1

1

i!
M i

for all M ∈ g.

Next, we will define a natural algebraic structure on the vector space g, called
the Lie bracket. It captures the infinitesimal behavior of the group structure on G.

Definition 2.6.

(1) For all h ∈ G, let Ch : G → G be conjugation by h. Define the adjoint of
h, Ad(h) := (dCh)id : g→ g.

(2) The adjoint representation of G, Ad : G → GL(g) is the morphism of Lie
groups defined by Ad : h 7→ Ad(h), and the adjoint representation of g is
the linear map ad := (dAd)id : g→ gl(g).

(3) The Lie bracket is the bilinear map [·, ·] : g × g → g defined by [X,Y ] =
ad(X)Y .
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The next proposition summarizes some basic properties of the bracket on g.

Proposition 2.7.

(1) For all g ∈ G and for all X ∈ g, Cg(γX(t)) = γAd(g)X(t).

(2) For all X,Y ∈ g, [X,Y ] = ad(X)Y =
d

dt
|t=0Ad(γX(t))Y .

(3) The kernel of ad is {X ∈ g : [X,Y ] = 0 for all Y ∈ g}.
(4) [·, ·] is bilinear (R-bilinear when G is a real Lie group and C-bilinear when

G is a complex Lie group.)
(5) Let X,Y ∈ g. If VX and VY are left invariant vector fields on G so that

VX(id) = X and VY (id) = Y , then [VX , VY ] := VXVY − VY VX is a left
invariant vector field with [X,Y ] = [VX , VY ](id).

(6) [X,X] = 0 for all X ∈ g.
(7) [·, ·] satisfies the Jacobi identity, i.e. ad([X,Y ]) = [ad(X), ad(Y )] for all

X,Y ∈ g.

Proof. Parts (1) to (4) and (6) follow immediately from the definition. The proof
of (5) is a short computation involving (1), (2) and the Baker-Campbell-Hausdorff
formula for the exponential map. Part (7) is an easy consequence of (5) and the
Jacobi identity for vector fields. �

Proposition 2.7 motivates the following definition.

Definition 2.8.

(1) A Lie algebra is a vector space (over C or R) equipped with a bilinear map
[·, ·], called the Lie bracket, so that properties (6) and (7) of Propositon 2.7
hold.

(2) Let g1, g2 be two Lie algebras. A linear map f : g1 → g2 is a Lie algebra
morphism if [f(X), f(Y )] = f([X,Y ]) for all X,Y ∈ g1.

(3) A Lie subalgebra h of a Lie algebra g is a vector subspace that is closed
under the Lie bracket on g.

If a Lie algebra arises as the Lie algebra of a Lie group, it captures a surprising
amount of information about the Lie group. At the same time, it is a much simpler
object to study since it is a linear space. In the rest of this section, we will outline
some key results in the relationship between Lie algebras and Lie groups.

Theorem 2.9.

(1) If f : G1 → G2 is a morphism of Lie groups, then dfid : g1 → g2 is a
morphism of Lie algebras.

(2) The set of connected Lie subgroups of G is in bijection with the set of Lie
algebras in g.

Proof. Proof of (1). Let X and Y be elements in g1 and let VX and VY be the
left invariant vector fields on G1 so that VX(id) = X and VY (id) = Y . An easy
computation shows that df(VX) and df(VY ) are the left invariant vector fields so
that df(VX)(id) = dfidX and df(VY )(id) = dfidY . Part (1) then follows from the
fact that the push forward of diffeomorphisms preserve the bracket on vector fields.

Proof of (2). Given a Lie subgroup H of G, the inclusion map of H into G
induces an injective Lie algebra morphism of h into g. On the other hand, if h is
a Lie subalgebra of g, then the left G action on itself induces a left invariant sub-
bundle Vh of TG so that Vh(id) = h. Part (5) of Proposition 2.7 imply that this
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distribution is closed under the bracket on vector fields, so the Frobenius theorem
tells us that there is an immersed submanifold H of G whose tangent bundle is Vh.
For all h ∈ H, h ·H is also a submanifold whose tangent bundle is also Vh because
h is invariant under Ad(h). Thus, H = h · H. Similarly, one can show that H is
closed under inversion, so H must be a group. �

Theorem 2.10 (Lie’s third theorem). Any Lie algebra is the Lie algebra of a Lie
group.

Proof. Follows from (2) of Proposition 2.9 and Ado’s Theorem, which states that
every Lie algebra can be embedded as a Lie subalgebra of gl(n,R). �

Example 2.11. Let G be a linear group. For all g ∈ G and for all X,Y ∈ g,
Ad(g)X = gXg−1 and [X,Y ] = XY − Y X.

3. Semisimple Lie algebras.

Since we are interested in Riemannian symmetric spaces, we will now specialize
to the case of semisimple Lie groups. Later, we will see that these arise as the
connected components isometry groups of Riemannian symmetric spaces.

Definition 3.1. Let G be a Lie group and g its Lie algebra.

(1) An ideal i ⊂ g is a vector subspace such that for all X ∈ i and for all Y ∈ g,
we have [X,Y ] ∈ i.

(2) g is abelian if [X,Y ] = 0 for all X,Y ∈ g.
(3) g is simple if g is not abelian and has no non-trivial ideals.
(4) g is semisimple if g = g1×· · ·×gn (as Lie algebras), where each gi is simple.
(5) G is semisimple if g is semisimple.
(6) g is compact if the Lie group Int(g) ⊂ GL(g) corresponding to ad(g) ⊂ gl(g)

is compact.

Example 3.2.

(1) sln(F ), su(n) and so(n) are semisimple.
(2) gln(F ) is not semisimple because

gln(F ) = SpanF

{ 1 0
. . .

0 1

}× sln(F )

(3) bn(F ) is not semisimple because it cannot be decomposed as a product of
Lie algebras, and the subset of matrices in bn(F ) with 0 everywhere except
for the upper left hand corner is an ideal.

(4) su(n) and so(n) are compact.

On any Lie algebra, there is a canonical bilinear form we can define, called the
Killing form.

Definition 3.3. The Killing form on g is the bilinear form B given by

B(X,Y ) = tr (ad(X) ◦ ad(Y )).

When g is a complex Lie algebra, then the Killing form is a complex valued form.
However, by forgetting the complex structure, we can also realize g as a real Lie
algebra, in which case the Killing form is a real valued form. In situations where
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there might be some ambiguity, we will refer to the complex valued Killing form
as the complex Killing form, and the real valued Killing form as the real Killing
form. One can check that the real Killing form is twice the real part of the complex
Killing form.

One useful property of the Killing form is that it detects whether a Lie algebra
is semisimple. Furthermore, if the Lie algebra is semisimple, the Killing form can
also detect if it is compact. These, and other properties of the Killing form are
summarized in the next proposition.

Proposition 3.4.

(1) B([X,Y ], Z) = B(X, [Y,Z]) for all X,Y, Z ∈ g.
(2) If g = g1 × · · · × gn, then Bg = Bg1

× · · · ×Bgn
.

(3) If i ⊂ g is an ideal, then Bi = Bg|i×i.
(4) g is semisimple if and only if B is non-degenerate.
(5) If g is semisimple, then g is compact if and only if B is negative definite.

Proof. Part (1) follows from the Jacobi identity and the fact that tr (XY ) = tr (Y X)
for any X,Y ∈ gl(g), and (2) holds because by definition, if X ∈ gi and Y ∈ gj and
i 6= j, then [X,Y ] = 0. Part (3) is an easy consequence of the linear algebra fact
that if W is a subspace of a vector space V and φ is an endomorphism with image
W , then tr (φ|W ) = tr (φ).

Proof of (4). Observe that (1) implies

{X ∈ g : B(X,Y ) = 0 for all Y ∈ g}
is an ideal. Hence, if g is simple, then B has to be non-degenerate. Part (2) then
implies the same has to be true in the case when g is semisimple. On the other
hand, if B is non-degenerate and a ⊂ g is an ideal, then one can show use (1) to
show that a⊥ ⊂ g is also an ideal, and (3) implies that B|a×a and B|a⊥×a⊥ are
non-degenerate. Applying this iteratively allows us to decompose g into a product
of simple Lie algebras, so g is semisimple.

Proof of (5). Suppose that B is negative definite. Since Int(g) preserves B, it is
a closed subgroup of some orthogonal subgroup of GL(g) and thus is compact. On
the other hand, if Int(g) is compact, then it lies in some orthogonal subgroup of
GL(g). This means that we can choose a basis of g so that every element in Int(g)
is an orthogonal matrix and hence every element in ad(g) is skew-symmetric in
this basis. For any X ∈ g, let (ai,j)n×n is the skew-symmetric matrix representing
ad(X) in this basis. Then

B(X,X) =
∑
i,j

ai,jaj,i = −
∑
i,j

a2
i,j ≤ 0

and equality holds if and only if X lies in the center of g. Since g is semisimple, its
center is trivial, so B is negative definite.

�

Example 3.5.

(1) On gln(F ), B(X,Y ) = 2ntr (XY ) − 2tr (X)tr (Y ) for all X,Y ∈ gln(F ).
Hence, B is degenerate because

B

( 1 0
. . .

0 1

 , Y

)
= 0 for all Y ∈ gln(F ).
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(2) On bn(F ), B(X,Y ) = ntr (XY ) for all X,Y ∈ bn(F ). Hence, B(X,Y ) = 0
for all X,Y ∈ bn(F ) so B is degenerate.

An important feature of any semisimple complex Lie algebra g is the existence
of a special vector space decomposition of g known as the root space decomposition.
Using this, one can show that any semisimple Lie algebra has an important vector
space decomposition known as the Cartan decomposition. The rest of this section
will be used to explain these two decompositions.

3.1. Root space decomposition. The root space decomposition is very useful
when studying complex semisimple Lie algebras because the Killing form and Lie
bracket behave very well with respect to this decomposition. A surprising amount of
information about the structure of the Lie algebra can thus be read off quite easily
from this decomposition. However, for our purposes, we will only need the root
space decomposition to prove some statements about the Cartan decomposition.
As such, our description in this subsection is intentionally sparse, and proofs for
the results stated here will not be discussed, but referenced.

The root space decomposition relies on the existence of a non-trivial Cartan
subalgebra, which we will now define.

Definition 3.6. Let g be a complex semisimple Lie algebra. A Cartan subalgebra
is a maximal abelian subalgebra a ⊂ g such that ad(a) ⊂ gl(g) is diagonalizable.

Note that in the above definition ad(a) is simultaneously diagonalizable because
it is abelian.

Example 3.7.

(1) For g = sln(C), gln(C) and bn(C), the set of diagonal matrices in g is a
Cartan subalgebra.

(2) Let b′n(C) be the subset of bn(C) that has zeroes along the diagonal. This
is a complex Lie algebra with trivial Cartan subalgebra.

From the above example, one sees that non-trivial Cartan subalgebras need not
exist in any complex Lie algebra. However, the next theorem tells us that they
do exist if the Lie algebra is semisimple, and in that case, they are unique up to
conjugation.

Theorem 3.8. Every complex semisimple Lie algebra g has a non-trivial Cartan
subalgebra. Also, for any two Cartan subalgebras a1, a2 ⊂ g, there is some ψ ∈
Int(g) such that ψ(a1) = a2.

Proof. See Thoerem 3.1 in Chapter III of [2] for a proof of the existence of a non-
trivial Cartan subalgebra. For the uniqueness up to conjugation, a proof can be
found in Sections 16.2 to 16.4 of [3]. �

Equipped with the above theorem, we can now construct the root space decom-
position for any complex semisimple Lie algebra.

Definition 3.9. Let a ⊂ g be a Cartan subalgebra.

(1) For any α ∈ a∗, define gα := {X ∈ g : ad(H) ·X = α(H)X for all H ∈ a}.
(2) Define Λ := {α ∈ a∗ : gα 6= {0}} \ {0}.

If gα 6= {0}, then α is a root and gα is called the root space of α.
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Theorem 3.10. Let a be a Cartan subalgebra of a complex semisimple Lie algebra
g. Then a = g0.

Proof. See Proposition 8.2 of [3] for a proof. �

Definition 3.11. The vector space decomposition of a complex semisimple Lie
algebra

g = a⊕
⊕
α∈Λ

gα

is the root space decomposition.

Example 3.12. Let a ⊂ sl3(C) be the Cartan subalgebra that is the set of diagonal
matrices in sl3(C). Then

Λ := {αi,j : i, j = 1, 2, 3 and i 6= j}
is the set of roots for sl3(C) with respect to a, where

αi,j

 a1 0 0
0 a2 0
0 0 a3

 = ai − aj .

The root space gαi,j
is then the C-span of the matrix Ei,j with 1 in the (i, j) entry

and zero every where else.

The next theorem summarizes the important properties of this decomposition.

Theorem 3.13.

(1) Λ spans a∗.
(2) dim(gα) = 1 for all α ∈ Λ.
(3) If α ∈ Λ, then −α ∈ Λ.
(4) If α, α′ ∈ Λ and α 6= −α′, then B(gα, gα′) = 0 and [gα, gα′ ] = 0.
(5) [gα, gα′ ] ⊂ gα+α′ for all α, α′ ∈ Λ.
(6) For all α ∈ Λ, there exists some Hα ∈ a so that B(H,Hα) = α(H) for all

H ∈ a.

Proof. These statements are stated and proven in Theorem 4.2, Theorem 4.3 in
Chapter III of [2] and Proposition 8.3 of [3]. �

3.2. Cartan decomposition. The Cartan decomposition is a natural vector space
decomposition of any semisimple Lie algebra, and is very useful in the case when the
Lie algebra is non-compact. This decomposition is the key to relating Riemannian
symmetric spaces of non-compact type and semisimple Lie groups with non-compact
Lie algebras. We start this subsection be defining an important concept; the real
form of a Lie algebra.

Definition 3.14. Let g be a complex Lie algebra and h a Lie subalgebra. h is a
real form of g if there exists a C linear isomorphism φ : hC → g such that φ|h = id.

In the above, hC is the complexification of h, and is defined to be the complexi-
fication of h as a vector space, equipped with the bracket

[X + iY, Z + iW ]hC := [X,Z]h − [Y,W ]h + i([Y,Z]h + [X,W ]h)

for all X,Y, Z,W ∈ h. Clearly, if h is a real form of g, then the complex Killing
form on g restricted to h is the real Killing form on h.
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Among the real forms of a complex Lie algebra, the compact ones are of special
importance. However, just as in the case of Cartan subalgebras, it is not true that
every complex Lie algebra has a compact real form.

Example 3.15. bn(C) is a complex Lie algebra with no compact real form, because
none of the matrices in bn(C) are conjugate in gln(C) to a skew-hermitian matrix.

Fortunately, the semisimple condition again saves the day.

Theorem 3.16.

(1) Every complex semisimple Lie algebra has a real form which is compact.
(2) Let g be a real semisimple Lie algebra, let u be a compact real form of gC

and let σ : gC → gC be complex conjugation with respect to g. Then there
is an isomorphisms ψ : gC → gC such that ψ(u) is invariant under σ.

Proof. Proof of (1). Let g be a complex Lie algebra, and consider a root space
decomposition

g = a⊕
⊕
α∈Λ

gα.

For each α ∈ Λ, define Hα as in (6) of Theorem 3.13 and for each α ∈ Λ, choose
Xα ∈ gα so that [Xα, X−α] = Hα. One then uses properties of the root space
decomposition to check that

u :=
∑
α∈Λ

R(iHα) +
∑
α∈Λ

R(Xα −X−α) +
∑
α∈Λ

R(i(Xα +X−α))

is a compact real form. See Theorem 6.3 in Chapter III of [2] for details.
Proof of (2). Let τ be complex conjugation with respect to u. Using the fact

that both σ and τ are involutions, one can show that the operator P := (στ)2 is

diagonalizable with positive eigenvalues. Hence, one can define ψ := P
1
4 and check

that ψ(u) is invariant under σ. See Theorem 7.1 in Chapter III of [2] for details. �

Using the above theorem, we can define a Cartan decomposition of a semsimple
Lie algebra in the following way.

Definition 3.17. Let g be a real Lie algebra and σ be complex conjugation of gC

with respect to g. A vector space decomposition g = k+p is a Cartan decomposition
if there exists a compact real form u ⊂ gC such that σ(u) = u, k = g ∩ u and
p = g ∩ (iu).

Some properties of Cartan decompositions are recorded as the next proposition.

Proposition 3.18. Let g be a semisimple Lie algebra and let g = k+p be a Cartan
decomposition. Then

(1) [k, k] ⊂ k, [k, p] ⊂ p and [p, p] ⊂ k.
(2) B|k×k is negative definite, B|p×p is positive definite and B(k, p) = 0.
(3) If g = k′ + p′ is another Cartan decomposition, then there exists some

ψ ∈ Int(g) such that ψ(k) = k′ and ψ(p) = p′.
(4) k is a maximal compact subalgebra of g.

Proof. Parts (1) and (2) are easy consequences of the definition of the Cartan
decomposition and the facts that the Killing form is negative definite on a real
compact semisimple Lie algebra and the complex Killing form on a complex Lie
algebra restricted to a real form gives the Killing form on the real form.
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Proof of (3). Let u and u′ be the compact real forms of gC that correspond to
the Cartan decompositions k+p and k′+p′ respectively. Let τ , τ ′ and σ be complex
conjugation of gC with respect to u, u′ and g respectively, and let P := (ττ ′)2. One
can verify that P is diagonalizable with positive eigenvalues, and σ commutes with
P t for all positive values of t. This means that P t leaves g invariant, so P t is a
one parameter subgroup of Aut(g). Since g is semisimple, Int(g) is the identity
component of Aut(g) (see Corollary 6.5 in Chapter II of [2]), which means that P t

lies in Int(g). Check that ψ := P
1
4 works.

Proof of (4). Suppose that there is a compact subalgebra k1 in g that properly
contains k. Then there is some non-zero element X ∈ k1 ∩ p. Let u be the compact
real form of gC that corresponds to the Cartan decomposition k + p, and let τ be
complex conjugation of gC with respect to u. Then τ preserves g, and one can check
that the bilinear form Bτ on gC defined by Bτ (X,Y ) = −B(X, τY ) is symmetric,
positive definite, and its restriction to g × g is real valued. On the other, one can
also show that for Y,Z ∈ g, Bτ (ad(X)Y,Z) = Bτ (Y, ad(X)Z). This means that
ad(X) is diagonalizable over R, and not all of its eigenvalues are zero because g
is semisimple. However, this implies that the one parameter subgroup γad(X) in
Int(g) cannot lie in a compact subgroup, contradiction. �

Observe from the definition of a Cartan decomposition that for a compact
semisimple Lie algebra g, the trivial decomposition with k = g and p = {0} is
a Cartan decomposition. In fact, (4) of Proposition 3.18 implies that this is the
only Cartan decomposition for a compact semisimple Lie algebra. Hence, Car-
tan decompositions are interesting only in the cases when we are working with a
non-compact semisimple Lie algebra.

The next theorem gives an equivalent formulation of the Cartan decomposition,
which motivates the following definition.

Theorem 3.19. Let g = k + p be a vector space decomposition of a semisimple
Lie algebra such that k ⊂ g is a subalgebra. Then this is a Cartan decomposition
if and only if the map s : k + p → k + p defined by s : (X,Y ) 7→ (X,−Y ) is a
Lie algebra automorphism and has the property that the bilinear form Bs defined
by Bs(X,Y ) := −B(X, sY ) is symmetric and positive definite.

Proof. For the forward direction, recall that the complex conjugation τ of gC defined
in the proof of (4) of Proposition 3.18 preserves g. This allows one to verify that
s = τ |g satisfies the required properties. For the other direction, suppose that such
an s exists. It is then an easy exercise to show that B(k, p) = 0, [k, p] ⊂ p and
[p, p] ⊂ k. Using this, one can check that u := k+ ip ⊂ gC is a compact real form of
gC. The fact that g = p + k is a Cartan decomposition follows from this. �

Definition 3.20. An involutive Lie algebra automorphism θ : g → g is a Cartan
involution if the bilinear form Bθ defined by Bθ(X,Y ) := −B(X, θY ) is symmetric
and positive definite.

Example 3.21. Define the vector spaces c1(F ) and c2(F ) by

c1(F ) := {X ∈ sln(F ) : X = −XT } and c2(F ) := {X ∈ sln(F ) : X = XT }
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Observe that we have the vector space decompositions

sln(C) = c1(C)⊕ c2(C)

sln(R) = c1(R)⊕ c2(R)

su(n) = c1(R)⊕ ic2(R)

In particular, sln(R) and su(n) are real forms of sln(C). Since su(n) is compact,
this also shows that the above decomposition of sln(R) is a Cartan decomposition,
with k = c1(R) and p = c2(R).

4. Symmetric spaces.

Definition 4.1. A (Riemannian) symmetric space M is a connected, simply con-
nected real analytic Riemannian manifold such that for all p ∈M , there is an involu-
tive isometry sp : M →M with the property that sp(p) = p and (dsp)p(X) = −X.
Also, denote the connected component of the isometry group (equipped with the
compact open topology) of M by I0(M).

We will leave it to the reader to show that M is complete and I0(M) acts
transitively on M .

Theorem 4.2. G := I0(M) can be equipped with the structure of a Lie group that
acts transitively on M , and K := StabG(p) is a compact subgroup.

Proof. First, topologize G by the compact-open topology. The compactness of
K follows from the Riemannian geometry fact that for any connected, complete
Riemannian manifold M and any sequence {φn} in the isometry group of M , if
{φn(p)} is uniformly bounded for some p ∈ M , then there is a subsequence of φn
that converges to some isometry φ of M .

Since K preserves an inner product on TpM , it can be realized as a closed
subgroup of an orthogonal group of TpM , and thus has the structure of a Lie
group. (Here, we are using the closed subgroup theorem, which states that every
closed subgroup of a Lie group is an embedded Lie subgroup.) Next, consider a
ball Br(p) of radius r in M centered at p. If r is sufficiently small, then for every
q ∈ Br(p), there is a unique geodesic between p and q. Let q′ be the midpoint
between p and q along this geodesic, and note that Tq := sq′sp is an isometry in
I0(M) that maps p to q. Hence, Br(p) can be identified with a subset S of I0(M),
and S inherits an analytic structure from Br(p). One can then show that S ×K
is an open subset of G, and has a natural product analytic structure. Doing this
for every point p ∈ M allows us to build an analytic structure on G, for which
multiplication and inversion are real analytic. �

For every p ∈M , the involution sp : TpM → TpM induces a group automorphism
σp : G → G defined by σp : g 7→ spgsp. This in turn induces the involutive
Lie algebra isomorphism θp := (dσp)id : g → g. Since θp is an involution, it
is diagonalizable, and each of its eigenvalues are either 1 or −1. Hence, we can
decompose

g = {X ∈ g : θp(X) = X}+ {X ∈ g : θp(X) = −X}.
Some properties of this decomposition is listed in the next proposition.

Proposition 4.3.

(1) The subspace {X ∈ g : θpX = X} of g is the Lie algebra k of K.
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(2) Let p := {X ∈ g : θp(X) = −X}. Then p is Ad(K)-invariant.
(3) Let Πp : G → M be the projection given by Πp : g 7→ g · p. Then (dΠp)id :

g→ TpM is surjective with kernel k.
(4) γ(t) is a geodesic in M with γ(0) = p if and only if γ(t) = γX(t) · p for

some X ∈ p.

Proof. Observe that if k ∈ K, then spksp = k, and if g ∈ G \K, then spgsp 6= g.
Part (1) follows from this fact. This fact also implies that Ckσp(g) = σpCk(g) for
all k ∈ K and all g ∈ G, which means that Ad(k)θp(X) = θpAd(k)(X) for all k ∈ K
and all X ∈ g. In particular, (2) holds.

It is clear that the kernel of (dΠp)id has kernel k because Π−1
p (p) = K. The

surjectivity of Π is a consequence of the following: for arbitrarily small r, the open
subset S × K in G defined in the proof of Theorem 4.2 is mapped by Πp onto
Br(p). Hence, (3) holds. In particular, (3) implies that (dΠp)id|p : p → TpM is
an isomorphism of vector spaces. Hence, one needs only to verify that γX(t) · p is
indeed a geodesic for every X ∈ p. Let γ(t) be a geodesic in M with γ(0) = p and
γ′(0) = (dΠp)id(X). For all t ∈ R, let pt be the midpoint between p and γ(t) and
define Tγ(t) := sptsp. It is clear that Tγ(t) · p = γ(t), and one can check that Tγ(t)

is a one parameter subgroup of G and d
dt |t=0Tγ(t) = X. �

Example 4.4.

(1) M = Rn, G = Rn o SO(n), K = SO(n).
(2) M = Sn, G = SO(n+ 1), K = SO(n).
(3) M = Hn, G = SO+(n, 1), K = SO(n).
(4) M = SLn(R)/SO(n) equipped with metric induced by Bθ, where θ is the

Cartan involution corresponding to so(n), G = PSLn(R), K = PSO(n).

4.1. Classification theorem. For the rest of this section, we will focus on sym-
metric spaces M such that the Lie algebra of I0(M) has the property known as
“non-compact type”. Before we do that however, we will use this subsection to
give a brief description of a well-known classification of symmetric spaces, so as to
motivate the non-compact type restriction we impose. Since this subsection is more
of an aside, statements will be made without giving any proofs.

Definition 4.5. Let M be a symmetric space.

(1) M is irreducible if it cannot be written as a non-trivial product of symmetric
spaces.

(2) M is of non-compact type if M has no Euclidean factors and non-positive
sectional curvature.

(3) M is of compact type if M has no Euclidean factors and non-negative sec-
tional curvature.

The next theorem motivates the terminology used in the above theorem. This
is a deep classification theorem, and one can find a very detailed treatment of it in
Section 1 through Section 4 of Chapter V in [2].

Theorem 4.6. Let M be a Riemannian symmetric space and G := I0(M).

(1) M is of non-compact type if and only if G is semisimple and θp is a Cartan
involution for all p ∈M . In particular, g is not compact.

(2) M is of compact type if and only if G is semisimple and compact.
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(3) M = M0 × · · · ×Mk, where M0 is trivial or Euclidean and Mi is trivial or
irreducible of compact or non-compact type for all i = 1, . . . , k.

Observe that the above theorem implies in particular that any symmetric space
can be decomposed into a product according to curvature.

4.2. Flats and the restricted root space decomposition. It turns out that
the configuration of the collection of totally geodesic Euclidean subspaces in M
determines a lot of the geometry of M . We will now study these subspaces, also
known as flats.

Definition 4.7.

(1) A flat in M is a totally geodesic embedding of Euclidean space in M .
(2) A flat is maximal if it is not properly contained in another flat.
(3) The rank of M is the dimension of a maximal flat.

In the above definition, the rank of M is well-defined because for any two maxi-
mal flats, there is an isometry of M that takes one of these flats to the other. This
fact, together with other properties of flats, are stated as the next proposition.

Proposition 4.8. Let M be a symmetric space and let G := I0(M).

(1) Let p ∈M and let g = k+p be the vector space decomposition corresponding
to p. The map

{Maximal abelian subalgebras in p} → {Maximal flats containing p}
a 7→ exp(a) · p

is a bijection.
(2) Every geodesic is contained in a maximal flat.
(3) Let F1, F2 be maximal flats in M . Then there is some g ∈ G such that

g · F1 = F2.

Proof. For symmetric spaces, there is a well-known formula for the curvature tensor
in terms of the Lie bracket. More precisely, let p ∈M and let X,Y, Z ∈ TpM . Then
the isomorphism (dΠp)id identifies X,Y, Z with vectors in p, and R(X,Y )Z =
−[[X,Y ], Z] (see Theorem 4.2 in Chapter IV of [2] for a proof). Part (1) follows
easily from this. Part (2) is a consequence of the fact that G acts transitively on
the unit tangent bundle of M .

Proof of (3). By (1) and the transitivity of the action of G on M , it is sufficient
to show that if k + p = g is a Cartan decomposition corresponding to some p ∈M
and for any pair of maximal abelian subalgbras a1 and a2 in p, there is some k ∈ K
such that Ad(k)a1 = a2. Choose Xi ∈ ai so that ad(Xi) is diagonalizable with
pairwise distinct eigenvalues, and consider the continuous function f : K → R
given by f(k) = B(Ad(k)X1, X2). One can then show that if k is a minimum of f ,
then Ad(k)a1 = a2. See Lemma 6.3 in Chapter V of [2] for details. �

Example 4.9.

(1) Hn and Sn are rank 1 symmetric spaces.
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(2) SLn(R)/SO(n) has rank n − 1, and a maximal flat containing the point
id · SO(n) is

{ a1 0
. . .

0 an

 · SO(n) :

n∏
i=1

ai = 1

}
.

When M is of non-compact type, the maximal flats in M allow us to construct
a vector space decomposition, known as the restricted root space decomposition, of
g. This decomposition is quite similar to the root space decomposition described in
Section 3.1, and has the advantage that it can be defined even for real, non-compact
semisimple Lie algebras.

To describe this decomposition, we start with a Cartan decomposition g = k+ p
of the Lie algebra of G = I0(M). One can check that for all X ∈ p, ad(X) is
self adjoint with respect to the positive definite bilinear form Bθ, where θ is the
Cartan involution corresponding to the Cartan decomposition we started with. In
particular, every element in ad(p) is diagonalizable. Hence, if we choose a maximal
abelian subalgebra a in p, then ad(a) is simultaneously diagonalizable, and will play
the role of the Cartan subalgebra in the root space decomposition.

As we did in the root space decomposition, we define

gα := {X ∈ g : ad(H)X = α(H)X for all H ∈ a}

for any α ∈ a∗, and

Λ := {α ∈ a∗ : gα 6= {0}} \ {0}.

This allows us to write

g = g0 ⊕
⊕
α∈Λ

gα,

which is the restricted root space decomposition.
Unlike the root space decomposition, it is not necessarily true that g0 = a or that

gα is 1-dimensional for all α ∈ Λ. However, we do have the following properties.

Proposition 4.10.

(1) If α ∈ Λ, then −α ∈ Λ and θ : gα → g−α is an isomorphism for all α ∈ Λ.
(2) If θ(g0) = g0.
(3) For all α, α′ ∈ Λ, [gα, gα′ ] ⊂ gα+α′ .

Proof. There are consequences of routine computations. �

4.3. Boundary of a symmetric space of non-compact type. By Theorem
4.6, we see that if M is compact type, then it is in particular compact, so it does
not admit a natural boundary. Also, if M is Euclidean, then its boundary is easy to
understand. Hence in this subsection, we will focus on the case when M is of non-
compact type, and describe its boundary and the stabilizers of points its boundary.
For the rest of this section, we will assume that M is of non-compact
type.

Using the restricted root space decomposition, we will describe the stabilizers
of points on the boundary of M . But first, we need to define what we mean by
boundary.
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Definition 4.11. Let M be a symmetric space of non-compact type. The boundary
of M ,

∂M := { directed unit speed geodesics in M}/ ∼
where γ1 ∼ γ2 if dM (γ1(t), γ2(t)) is uniformly bounded above for t ≥ 0.

The next proposition holds in any Riemannian metric space of nonpositive cur-
vature. In particular, in holds for our symmetric space of non-compact type, M .

Proposition 4.12. Choose p ∈ M . Then the map T 1
p (M) → ∂M which sends

each unit tangent vector v to the unique unit speed geodesic γ so that γ(0) = p and
γ′(0) = v, is a bijection.

This proposition allows us to define a topology on ∂M which is independent of
the choice of p ∈M . The action of G on M extends to continuously to an action on
∂M because this action preserves dM and maps unit speed geodesics to unit speed
geodesics.

Definition 4.13. A subgroup P ≤ G is parabolic if it is the stabilizer of a point in
∂M .

We want to understand the parabolic subgroups of G. The main tool to do so is
the following theorem.

Theorem 4.14. Let ξ ∈ ∂M and let Gξ be the corresponding parabolic subgroup.
Choose any p ∈ M , let g = k + p be the Cartan decomposition corresponding to p
and let X ∈ p such that [γX(t) · p] = ξ. Then g ∈ Gξ if and only if

lim
t→∞

γX(t)−1gγX(t)

exists.

Proof. First, observe that g ∈ Gξ if and only if

dM (γX(t) · p, gγX(t) · p) = dM (p, γX(t)−1gγX(t) · p)
is uniformly bounded above for all t ≥ 0.

Now, suppose that φ := lim
t→∞

γX(t)−1gγX(t) exists. Then

lim
t→∞

dM (p, γX(t)−1gγX(t) · p) = dM (p, φ · p),

which implies that dM (p, γX(t)−1gγX(t) · p) is uniformly bounded above for all
t ≥ 0.

On the other hand, if dM (p, γX(t)−1gγX(t) · p) is uniformly bounded above for
all t ≥ 0, then γX(tn)−1gγX(tn) converges in G up to subsequence because Πp :
G → M has compact fibers. One then uses the fact that ad(X) is symmetric for
all X ∈ p to show that the sequence actually converges. See Proposition 2.17.3 in
[1] for details. �

With the description of parabolic subgroups given in Theorem 4.14, we can give
a more explicit description of what the Lie algebras of parabolic subgroups have to
be, up to conjugation.

Corollary 4.15. Assume the same hypothesis as Theorem 4.14. Also, let a ⊂ p be
a Cartan subalgebra such that γX(t) · p ⊂ exp(a) · p. Then the Lie algebra gξ of Gξ
can be given by

gξ = a⊕
⊕

α∈Λ:α(X)≥0

gα
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Proof. On the level of Lie algebras, Theorem 4.14 says that Z ∈ gξ if and only if

lim
t→∞

Ad(γX(t)−1)Z exists. Suppose that Z ∈ gα for some α ∈ Λ ∪ {0}. Then

Ad(γX(t)−1)Z = exp(−ad(X)t)Z = exp(−α(X)t)Z,

so lim
t→∞

Ad(γX(t)−1)Z exists if and only if α(X) ≥ 0. The corollary follows easily

from this. �

Example 4.16. Let p be the identity coset of SL3(R)/SO(3) and consider the
vector

X =

 a0 0 0
0 b0 0
0 0 c0

 ∈ sl3(R).

Observe that

a :=

{ a1 0 0
0 a2 0
0 0 a3

 · SO(3) : a1a2a3 = 1

}
is a flat containing the geodesic γX(t) · p. Let ξ = [γX(t) · p] ∈ ∂M . By Corollary
4.15, we see that if a0 > b0 > c0, then

Gξ =

{ ∗ ∗ ∗0 ∗ ∗
0 0 ∗

 ∈ SL3(R)

}
.

On the other hand, if a0 = b0 > c0, then

Gξ =

{ ∗ ∗ ∗∗ ∗ ∗
0 0 ∗

 ∈ SL3(R)

}
.
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