
EXISTENCE THEORY FOR HARMONIC METRICS

JÉRÉMY TOULISSE

These are the notes of a talk given by the author in Asheville at the
workshop “Higgs bundles and Harmonic maps” in January 2015. It aims
to sketch the proof of the famous Corlette-Donaldson Theorem which gives
the existence of a harmonic metric on flat G-bundles associated to reductive
representation.

Let G be a complex semi-simple Lie group and Σ a genus g > 1 closed
oriented surface. We define the character variety R(Σ, G) as the quotient
of reductive homomorphisms Homred(π1(Σ), G) by the action of G by con-
jugation. For each complex structure on Σ, the non-abelian Hodge theorem
provides a parametrization of the character variety R(Σ, G) by the moduli
space of poly-stable G-Higgs bundles.

The proof of the non-abelian Hodge theorem contains two main steps. The
first one, often called the Corlette-Donaldson theorem, gives the existence
of a harmonic metric in the gauge orbit of the flat G-bundle associated to a
(conjugacy class of) representation ρ : π1(Σ)→ G as soon as ρ is reductive.
The second step, called the Hitchin-Kobayashi correspondence, relates G-
Higgs bundles satisfying Hitchin equations to poly-stable G-Higgs bundles.

From now on, we will restrict ourselves to the case G = SLn(C). The
proofs and statements in the general case are very similar. However, the
SLn(C) case allows to work in the category of vector bundles and not in the
category of principal G-bundles, and simplifies the objects. People familiar
with the theory of principal G-bundles would not have difficulties in trans-
lating the statements and proofs in the language of principal G-bundles.

These notes have been written using the following articles and books:
[Cor88, ES64, Ham75, LW08] and the very good survey [Wen12].

Acknowledgement: I would like to thank all the participants to the
workshop for interesting remarks. I would also thank the organizers and
GEAR for the invitation.

1. Moduli space of flat connections

Let E −→ Σ be a rank n complex vector bundle over Σ whose first Chern
class is 0 (equivalently, the determinant bundle is topologically trivial).

Definition 1. A connection on E is a C-linear map

∇ : Ω0(Σ, E) −→ Ω1(Σ, E),

satisfying the Leibniz rule

∇(fs) = df ⊗ s+ f∇s,

where s ∈ Ω0(Σ, E) and f ∈ Ω0(Σ).
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Denote by C the space of connections on E which induce the trivial one on
the determinant bundle (this condition corresponds to representation into
SLn(C)). Note that the difference between two connections ∇1,∇2 ∈ C is
tensorial, that is

(∇2 −∇1)(fs) = f(∇2 −∇1)(s),

for s ∈ Ω0(Σ, E) and f ∈ Ω0(Σ). In particular, ∇2 −∇1 ∈ Ω1(Σ,End0(E))
(where End0(E) is the bundle of traceless endomorphisms of E) and so C
is an affine space modelled on Ω1(Σ,End0(E)).

Definition 2. Given a connection ∇ ∈ C , one can associates its curvature

F∇ := ∇∧∇ ∈ Ω2(Σ,End0(E)).

A connection is flat when F∇ = 0.

Denote by C0 ⊂ C the subspace of flat connections.

Definition 3. The gauge group is

G : = {g ∈ Ω0(Σ,End(E)), det g = 1}
= Ω0(Σ, SLn(C)).

We have an action of G on C by conjugation. Note that, one easily checks
that for g ∈ G and ∇ ∈ C ,

Fg.∇ = gF∇g
−1.

In particular, G preserves C0.

Proposition 1. We have a canonical identification between Hom(π1(Σ), SLn(C))
and C0/G .

Proof. Given ρ ∈ Hom(π1(Σ), SLn(C)), one can construct a rank n complex
vector bundle Eρ −→ Σ as follow:

Eρ = Σ̃× Cn/π1(Σ),

where Σ̃ is the universal cover of Σ and the action of π1(Σ) on Σ̃ × Cn is
given by γ.(x, v) = (γx, ρ(γ)v) (where γx is the action of γ ∈ π1(Σ) by deck

transformation on Σ̃). The canonical connection on Σ̃ × Cn descends to a
flat connection ∇ρ on Eρ. In particular, the first Chern class of Eρ vanishes
and Eρ is homeomorphic to E.

Now, given a flat connection ∇ ∈ C0, a closed smooth path γ : [0, 1]→ Σ,
and a basis B of Eγ(0), one can consider the basis B′ obtained by parallel
transport of B0 along γ. It follows that B and B′ are two basis of the same
vector space which differ by a unique gB,γ ∈ SLn(C). By flatness of ∇, gB,γ
only depends on the homotopy class of γ in π1(Σ). It follows that we can
define a map

hol∇,B : π1(Σ) −→ SLn(C),

which associates to an homotopy class of closed path γ the element gB,γ of
the above construction. Note that if B′ is another basis, hol∇,B′ is conjugate
to hol∇,B. So we get the holonomy map

hol : ∇ −→ Hom
(
π1(Σ), SLn(C)

)
/SLn(C).

Moreover, we check that two gauge equivalent flat connections give rise
to the same class of holonomy representation. �
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We finish this section with a definition:

Definition 4. A flat connection ∇ ∈ C0 on E is reductive if any ∇-
invariant subbundle has a ∇-invariant complement. A representation ρ ∈
Hom

(
π1(Σ), SLn(C)

)
is reductive if its associated flat connection is reduc-

tive.

2. Harmonic metrics

Let ρ : π1(Σ) −→ SLn(C) and E = Eρ.

Definition 5. Let h be a hermitian metric on E. A connection dA is uni-
tary if for each sections s1 and s2 of E,

d〈s1, s2〉h = 〈dAs1, s2〉h + 〈s1, dAs2〉h,

here 〈., .〉h is the hermitian product h.

In order to define harmonic metrics, we need an interpretation of hermit-
ian metrics in terms of equivariant maps. Set

D := SLn(C)/SU(n) = {positive hermitian matrices M with detM = 1}.

We have an action on SLn(C) on D given by

g.M = (g−1)∗Mg−1.

Proposition 2. A hermitian metric on E is equivalent to a ρ-equivariant
map

u : Σ̃ −→ D,

that is a map satisfying u(γx) =
(
ρ(γ)−1

)∗
u(x)ρ(γ)−1.

Proof. Let u be such a map and s be a section of E seen as an ρ-equivariant

map s : Σ̃ −→ Cn. Define

‖s‖u(x) := 〈s(x), u(x)s(x)〉Cn .

We easily check that

‖s‖2u(γx) = 〈ρ(γ)s(x),
(
ρ(γ)−1

)∗
u(x)s(x)〉Cn = ‖s‖2u(x).

So ‖s‖2u is ρ-invariant and descends to a function over Σ.
On the other hand, let h be a hermitian metric on E and take s1 and

s2 two sections of E. Take x ∈ Σ, x̃ ∈ Σ̃ and choose s̃i : (Σ̃) −→ Cn two
ρ-equivariant maps representing si. It follows that there exists a u(x̃) ∈ D
so that

〈s1(x), s2(x)〉h = 〈s̃1(x̃), u(x̃)s2(x̃)〉Cn .

As the right hand side is ρ-invariant,

〈s̃1(x̃), u(x̃)s2(x̃)〉Cn = 〈ρ(γ)s̃1(x̃), u(γ̃x)ρ(γ)s2(x̃)〉Cn .

It follows that u(x̃) = ρ(γ)∗u(γx̃)ρ(γ), and so u is ρ-equivariant. �

Note that D carries an invariant metric (the Killing metric), and we
denote by ∇ the associated Levi-Civita connection. So, given a metric

g on Σ, one can define the energy of a Hermitian metric u ∈ W 1,2
ρ (Σ̃, D)
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(the Sobolev space of ρ-equivariant map admitting a weak differential in L2)
by:

Eρ(u) :=
1

2

∫
Σ
‖du‖2dvg.

Here, du ∈ Γ(T ∗Σ̃ ⊗ u∗TD), the norm of du is taken with respect to the
product metric and dvg is the area form associated to g. Note that the
integral is well-defined as ‖du‖2 is ρ-invariant and so descends to a function
on Σ.

Remark 1. The energy of u only depends on the conformal class of g. So
the energy of a hermitian metric u can be defined for each complex structure
on Σ.

Definition 6. A harmonic metric is a C 2 ρ-equivariant map u : Σ̃ −→ D
which is a critical point of the energy functional.

We would like a local description of harmonic metrics. Given a ρ-equivariant
map u, one can associate its tension field

τ(u) := d∗∇du,

where d∗∇ is the dual of the covariant derivative of forms with value in u∗TD.

Proposition 3. Let ψ := d
dt |t=0

ut where (ut)t∈I is a smooth path of ρ-

equivariant maps with u0 = u. We have the following:

d

dt |t=0
Eρ(ut) =

∫
Σ
〈τ(u), ψ〉dvg,

where 〈., .〉 is the scalar product with respect to the pull-back by u of the
Killing metric on D.

Proof. Note that we have d
dt |t=0

dut = d∇ψ. It follows that

d

dt |t=0
Eρ(ut) =

d

dt |t=0

1

2

∫
M
‖du‖2dvg

=

∫
Σ
〈d∇ψ, du〉dvg

=

∫
Σ
〈ψ, d∗∇du〉dvg.

�

Corollary 1. A C 2 ρ-equivariant map u is a harmonic metric if and only
if τ(u) = 0.

We are now ready to state the main theorem:

Theorem (Corlette-Donaldson-Labourie). The following are equivalent:

(1) The G -orbit of a flat connection A admits a harmonic metric.
(2) The representation ρA ∈ Hom(π1Σ, G) is reductive.

Note that this theorem provides an identification, when fixing a complex
structure on Σ, between the moduli space of flat reductive connections and
the moduli space of harmonic bundles.
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3. Proof

(1) =⇒ (2)

Suppose u is a harmonic metric and ρ is not reductive. Let E1 ⊂ E be an
∇-invariant sub-bundle and let E2 its orthogonal complement. Denote by
ni = dimEi. The flat connection ∇ decomposes as follow (using the metric
u):

A =

(
A1 β
0 A2

)
= dA + Ψ =

(
dA1 + Ψ1 β
0 dA2 + Ψ2

)
where β ∈ Ω0(X,Hom(E1, E2)) is called the second fundamental form, the
dAi are unitary and Ψi ∈ Ω1(X, isu(ni)). One easily checks that

Ψ =

(
Ψ1

1
2β

1
2β
∗ Ψ2

)
,

and that

Eρ(u) = ‖Ψ‖2 = ‖Ψ1‖2 + ‖Ψ2‖2 + ‖β‖2.
Let ξ = (−n2)|E1

⊕ n1|E2
∈ Lie(G ). Let

ut := exp(tξ)u.

We obtain

‖Ψt‖2 = ‖Ψ1‖2 + ‖Ψ2‖2 + e−tn/2‖β‖2.
But, as u is harmonic, d

dt |t=0
‖Ψt‖ = 0, so β = 0 which gives a contradiction.

(2) =⇒ (1)

3.1. Definitions and notations. Let (M, g) be a Riemannian manifold
and E −→ (M, g) be a complex vector bundle equipped with a hermitian
metric. For η, ξ ∈ Γ(E), one defines the scalar product

〈η, ξ〉E :=

∫
M

(η, ξ)dvg.

Recall that the metric on E induces a covariant derivatives on forms with
value in E that we denote

d∇ : Γ(E) −→ Γ(T ∗M ⊗ E).

For k ∈ N ∪ {∞} and α ∈ (0, 1), we define the following vector spaces:

- C k(E) = {sections of E which are C k}

- C k
0 (E) = {η ∈ C k(E), so that η has compact support}

- C k,α(E) = {η ∈ C k(E), dk∇η ∈ C 0,α((T ∗M)⊗k ⊗ E)}

- L2(E) = {η ∈ Γ(E), ‖η‖2E := 〈η, η〉E < +∞}.
- Lp(E) := {η ∈ Γ(E),

∫
M ‖η‖

p < +∞}

- W k,p(E) := {η ∈ Lp(E), ∀i = 1, ..., k, di∇η ∈ Lp((T ∗M)⊗i ⊗ E)}

- W k,p
loc := {η ∈ Γ(E), ∀K ⊂M compact , η|K ∈W k,p(E|K)}.

Remark 2. When E is the trivial vector bundle, we denote these spaces by
Lp(M)... They identify with spaces of functions over M .
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Given η ∈ Lp(E), we define:

‖η‖Lp :=

(∫
M
‖η‖pdvg

)1/p

,

and for η ∈W k,p(E),

‖η‖2Wk,p :=
k∑
i=0

‖di∇η‖2Lp .

With these norms, Lp(E) and W k,p(E) are Banach spaces. Note that in
the definition of W k,p(E), we only assume that the i-th covariant derivative
exists in a weak sense (that is in the sense of distributions). We recall the
Sobolev embedding Theorem

Proposition 4. (Sobolev Embedding Theorem) W j+k,p
loc (E) ⊂ C j,α(E) for

all α ∈
(

0, k − m
p

)
(where m = dimM).

Also, we recall the multiplication law for Sobolev spaces:

Proposition 5. (Multiplication Law) If k
m −

1
p > 0, then W k,p

loc (M) is a

Banach algebra (that is, the multiplication of functions in W k,p
loc (M) are in

W k,p
loc (M)).

3.2. Gradient flow for harmonic maps. Let u : Σ̃ −→ D be a ρ-

equivariant map so that du ∈ L2(T ∗Σ̃⊗u∗TD) (we say that u ∈W 1,2
ρ (Σ̃, D)).

We define the following equation for u : M × I −→ D:{
∂tut = −τ(ut)
u(., 0) = u

where ut = u(., t).
Note that, if a solution u(., t) exists for some t, then it is also ρ-equivariant.
In a coordinates system, this equation looks like:

(1)

{
(∂t −∆)uat = Γabc(ut)∇ubt∇uct
u(., 0) = u,

where Γabc are the Christoffel symbols of D and ∆ is the Laplace-Beltrami
operator on (M, g).

Short time existence.
Short time existence for the gradient flow of harmonic maps with bound-

ary has been proved by R. Hamilton [Ham75]. The proof is based on a
Implicit Functions Theorem. It consists in proving that the equation

(2) (∂t −∆ + a∇+ b)f = g,

where a and b are smooth and g ∈ Lp(Σ × [0, t0]) (for some t0 > 0) al-
ways admits a unique solution f ∈ W 2,p(Σ × [0, t0]) (with good boundary
conditions). In other words, the operator

L : W 2,p(Σ× [0, t0]) −→ Lp(Σ× [0, t0])
f 7−→ (∂t −∆)f + b∇f + cf

is an isomorphism.
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We look for a solution of equation (1) of the form u = ub + v where
ub is a fixed smooth function satisfying the boundary conditions and v ∈
W 2,p(Σ × [0, t0]). Let P : W 2,p(Σ × [0, t0]) −→ Lp(Σ × [0, t0]) the operator
defined by

P (v) = ∂t(ub + v) + τ(ub + v).

The differential of P at 0 has the form of equation (2) and so is an
isomorphism. By the Implicit Function Theorem for Banach spaces, P maps
a neighborhood U of 0 in W 2,p(Σ× [0, t0]) to a neighborhood V of P (ub) in
Lp(Σ× [0, t0]).

For ε > 0 small enough, the function f equal to 0 for t ∈ [0, ε) and equal
to P (ub) for t ∈ [ε, t0] will be in V . It follows that there exists a function
v ∈ U so that P (ub + v) = f . It means that ub + v will be solution of
equation (1) for t ∈ [0, ε).

Remark 3. As it is often the case for non-linear parabolic equations, we
can prove in this case that if the maximal time existence Tmax for a solution
to equation (1) is finite, then

lim
t→Tmax

‖∇ut‖ = +∞.

Long time existence
To prove the long time existence for the gradient flow, we only need to

get a uniform bound on ‖∇ut‖ (it is a consequence of Remark 3) where ut
is a solution of equation (1). At this point, the curvature of the target space
plays an important role. In fact, the energy density et = 1

2‖dut‖
2 satisfies

the so-called Bochner-Eells-Sampson formula (see [ES64]):

(∂t −∆)et = −‖∇dut‖2 −RicX(dut, dut) +RD(dut, dut, dut, dut),

where RicX is the Ricci curvature tensor of X and RD is the Riemann
curvature tensor of D. As D is a symmetric space of non-compact type,
RD ≤ 0. Moreover RicX is bounded from below. It follows that et satisfies

(∂t −∆)et 6 Cet,

for some C > 0. We say that et is a subsolution of the heat equation.
Now, we use the classical Moser’s Harnack inequality for subsolutions of

the heat equation:

Proposition 6. (Moser’s Harnack inequality) Let (M, g) a Riemannian
manifold and v : M × [0, T ] −→ R be a non-negative function. If there exist
(x0, t0) ∈M× [0, T ] and R > 0 so that for all (x, t) ∈ B(x0, R)× [t0−R2, t0]
(where B(x0, R) is the radius R ball centred at x0) we have

(∂t −∆)v 6 Cv, for C > 0,

then there exists a C ′ > 0 so that

v(x0, t0) 6 C ′R−(m+2)

∫ t0

s=t0−R2

∫
B(x0,R)

v(x, s)dvgds.

Here m = dimM .
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Applying this to e(x0, t0) for (x0, t0) ∈ Σ× [1, Tmax) and R < 1, we get

et(x0, t0) 6 C ′R−4

∫ t0

s=t0−R2

∫
B(x0,R2)

e(x, s)dvgds

6 C ′R−4

∫ t0

s=t0−R2

E (us)ds

But, note that, as u satisfies equation (1), we have

d

dt
E (ut) = −‖τ(ut)‖2,

and so

E (ut) = E (u0)−
∫ t

s=0
‖τ(us)‖2ds.

In particular E (ut) 6 E (u0) and

et(x0, t0) ≤ C ′R−2E (u0).

For t ∈ [0, 1], consider the function

a(., t) = exp(−Ct)e(., t).
Such a function satisfies

(∂t −∆)a ≤ 0.

Using the maximum principle, we get that a(x, t) ≤ max
x∈Σ

a(x, 0), and so

e(x, t) ≤ ‖u0‖eCt 6 ‖u0‖eC .
In particular, the norm of the gradient of ut is uniformly bounded and
solution to the gradient flow exists to all time.

Convergence to a solution

As E (ut) = E (u0)−
∫ l

0 ‖τ(us)‖2ds ≤ 0, there exists an unbounded increas-
ing sequence (ni)i∈N ⊂ R>0 so that the sequence (ui)i∈N where ui := uni

satisfies

τ(ui)
L2

−→ 0.

It follows that (ui)i∈N is a sequence of ρ-equivariant Lipschitz map with
uniformly bounded Lipschitz constant.

Proposition 7. If ρ is irreducible, then ui
C 0,1

−→ u∞ where u∞ is ρ-equivariant.

Proof. We claim that as ρ is irreducible, ui is bounded. In fact, let p ∈ Σ̃
and suppose that hi := ui(p) is not bounded (see hi as a determinant one
matrix). Choose a sequence (εi)i∈N ⊂ R>0 so that εihi −→ h∞ 6= 0. Let
V := Ker(h∞). Note that V is a proper subspace of Cn (because V 6= Cn
as h∞ 6= 0 and V 6= 0 as deth∞ = 0).

We claim that V is stable by ρ(π1(Σ)). In fact, let g−1 := ρ(γ), and
v ∈ V . As the ui are ρ-equivariant, d(ui(p), ui(p)g

−1) is uniformly bounded
as so is |〈hiv, w〉 − 〈higv, gw〉| for all w ∈ Cn. It follows that

|〈εihiv, w〉 − 〈εihigv, gw〉| −→ 0.

As v ∈ V , we get that 〈h∞gv, gw〉 = 0 for all w ∈ Cn and so gv ∈ V . �
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It follows that (ui)i∈N converges to a weak solution of the harmonic equa-
tion.

We want to prove that u∞ is a strong solution. We have that u∞ satisfies
(in the weak sense)

∆ua∞ + Γabc(u∞)∇u∞ub∇uc∞ = 0.

As ui
C 0,1

−→ u∞, then ui
W 1,p

loc−→ u∞ for all p > 1. Hence ∇ub∞,∇uc∞ ∈ L
p
loc(Σ̃)

and so ∇ub∞∇uc∞ ∈ L
p/2
loc (Σ̃). It follows that ∆ua∞ ∈ L

p/2
loc (Σ̃) and so, by

Schauder estimates,

ua∞ ∈W
2,p/2
loc (Σ̃) for all p > 1.

As ua∞ ∈W
2,p
loc (Σ̃) then ∇ub∞,∇uc∞ ∈W

1,p
loc (Σ̃). For p > 0, 1

2 −
1
p > 0, the

multiplication law implies that ∇ub∞∇uc∞ ∈W
1,p
loc (Σ̃) and so ua∞ ∈W

3,p
loc (Σ̃).

Finally, by Sobolev Embedding Theorem, we get that ua∞ ∈ C 2(Σ̃) and
so u∞ is a harmonic metric.
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