EXISTENCE THEORY FOR HARMONIC METRICS

JÉRÉMY TOULISSE

These are the notes of a talk given by the author in Asheville at the workshop "Higgs bundles and Harmonic maps" in January 2015. It aims to sketch the proof of the famous Corlette-Donaldson Theorem which gives the existence of a harmonic metric on flat G-bundles associated to reductive representation.

Let G be a complex semi-simple Lie group and Σ a genus g > 1 closed oriented surface. We define the *character variety* $\mathscr{R}(\Sigma, G)$ as the quotient of reductive homomorphisms $\operatorname{Hom}^{red}(\pi_1(\Sigma), G)$ by the action of G by conjugation. For each complex structure on Σ , the non-abelian Hodge theorem provides a parametrization of the character variety $\mathscr{R}(\Sigma, G)$ by the moduli space of poly-stable G-Higgs bundles.

The proof of the non-abelian Hodge theorem contains two main steps. The first one, often called the Corlette-Donaldson theorem, gives the existence of a harmonic metric in the gauge orbit of the flat G-bundle associated to a (conjugacy class of) representation $\rho : \pi_1(\Sigma) \to G$ as soon as ρ is reductive. The second step, called the Hitchin-Kobayashi correspondence, relates G-Higgs bundles satisfying Hitchin equations to poly-stable G-Higgs bundles.

From now on, we will restrict ourselves to the case $G = SL_n(\mathbb{C})$. The proofs and statements in the general case are very similar. However, the $SL_n(\mathbb{C})$ case allows to work in the category of vector bundles and not in the category of principal *G*-bundles, and simplifies the objects. People familiar with the theory of principal *G*-bundles would not have difficulties in translating the statements and proofs in the language of principal *G*-bundles.

These notes have been written using the following articles and books: [Cor88, ES64, Ham75, LW08] and the very good survey [Wen12].

Acknowledgement: I would like to thank all the participants to the workshop for interesting remarks. I would also thank the organizers and GEAR for the invitation.

1. Moduli space of flat connections

Let $E \longrightarrow \Sigma$ be a rank *n* complex vector bundle over Σ whose first Chern class is 0 (equivalently, the determinant bundle is topologically trivial).

Definition 1. A connection on E is a \mathbb{C} -linear map

$$\nabla: \Omega^0(\Sigma, E) \longrightarrow \Omega^1(\Sigma, E),$$

satisfying the Leibniz rule

$$\nabla(fs) = df \otimes s + f\nabla s,$$

where $s \in \Omega^0(\Sigma, E)$ and $f \in \Omega^0(\Sigma)$.

JÉRÉMY TOULISSE

Denote by \mathscr{C} the space of connections on E which induce the trivial one on the determinant bundle (this condition corresponds to representation into $SL_n(\mathbb{C})$). Note that the difference between two connections $\nabla_1, \nabla_2 \in \mathscr{C}$ is tensorial, that is

$$(\nabla_2 - \nabla_1)(fs) = f(\nabla_2 - \nabla_1)(s),$$

for $s \in \Omega^0(\Sigma, E)$ and $f \in \Omega^0(\Sigma)$. In particular, $\nabla_2 - \nabla_1 \in \Omega^1(\Sigma, \operatorname{End}_0(E))$ (where $\operatorname{End}_0(E)$ is the bundle of traceless endomorphisms of E) and so \mathscr{C} is an affine space modelled on $\Omega^1(\Sigma, \operatorname{End}_0(E))$.

Definition 2. Given a connection $\nabla \in \mathscr{C}$, one can associates its **curvature**

 $F_{\nabla} := \nabla \wedge \nabla \in \Omega^2(\Sigma, End_0(E)).$

A connection is **flat** when $F_{\nabla} = 0$.

Denote by $\mathscr{C}_0 \subset \mathscr{C}$ the subspace of flat connections.

Definition 3. The gauge group is

$$\mathscr{G}:=\{g\in\Omega^0(\Sigma, End(E)), \det g=1\}$$
$$=\Omega^0(\Sigma, SL_n(\mathbb{C})).$$

We have an action of \mathscr{G} on \mathscr{C} by conjugation. Note that, one easily checks that for $g \in \mathscr{G}$ and $\nabla \in \mathscr{C}$,

$$F_{g,\nabla} = gF_{\nabla}g^{-1}.$$

In particular, \mathscr{G} preserves \mathscr{C}_0 .

Proposition 1. We have a canonical identification between $Hom(\pi_1(\Sigma), SL_n(\mathbb{C}))$ and $\mathscr{C}_0/\mathscr{G}$.

Proof. Given $\rho \in \text{Hom}(\pi_1(\Sigma), SL_n(\mathbb{C}))$, one can construct a rank *n* complex vector bundle $E_{\rho} \longrightarrow \Sigma$ as follow:

$$E_{\rho} = \tilde{\Sigma} \times \mathbb{C}^n / \pi_1(\Sigma),$$

where $\widetilde{\Sigma}$ is the universal cover of Σ and the action of $\pi_1(\Sigma)$ on $\widetilde{\Sigma} \times \mathbb{C}^n$ is given by $\gamma.(x,v) = (\gamma x, \rho(\gamma)v)$ (where γx is the action of $\gamma \in \pi_1(\Sigma)$ by deck transformation on $\widetilde{\Sigma}$). The canonical connection on $\widetilde{\Sigma} \times \mathbb{C}^n$ descends to a flat connection ∇_{ρ} on E_{ρ} . In particular, the first Chern class of E_{ρ} vanishes and E_{ρ} is homeomorphic to E.

Now, given a flat connection $\nabla \in \mathscr{C}_0$, a closed smooth path $\gamma : [0, 1] \to \Sigma$, and a basis B of $E_{\gamma(0)}$, one can consider the basis B' obtained by parallel transport of B_0 along γ . It follows that B and B' are two basis of the same vector space which differ by a unique $g_{B,\gamma} \in SL_n(\mathbb{C})$. By flatness of ∇ , $g_{B,\gamma}$ only depends on the homotopy class of γ in $\pi_1(\Sigma)$. It follows that we can define a map

$$hol_{\nabla,B}: \pi_1(\Sigma) \longrightarrow SL_n(\mathbb{C}),$$

which associates to an homotopy class of closed path γ the element $g_{B,\gamma}$ of the above construction. Note that if B' is another basis, $hol_{\nabla,B'}$ is conjugate to $hol_{\nabla,B}$. So we get the holonomy map

$$hol: \nabla \longrightarrow \operatorname{Hom}(\pi_1(\Sigma), SL_n(\mathbb{C}))/SL_n(\mathbb{C}).$$

Moreover, we check that two gauge equivalent flat connections give rise to the same class of holonomy representation. $\hfill \Box$

We finish this section with a definition:

Definition 4. A flat connection $\nabla \in \mathscr{C}_0$ on E is **reductive** if any ∇ -invariant subbundle has a ∇ -invariant complement. A representation $\rho \in$ Hom $(\pi_1(\Sigma), SL_n(\mathbb{C}))$ is reductive if its associated flat connection is reductive.

2. HARMONIC METRICS

Let $\rho : \pi_1(\Sigma) \longrightarrow SL_n(\mathbb{C})$ and $E = E_{\rho}$.

Definition 5. Let h be a hermitian metric on E. A connection d_A is unitary if for each sections s_1 and s_2 of E,

$$d\langle s_1, s_2 \rangle_h = \langle d_A s_1, s_2 \rangle_h + \langle s_1, d_A s_2 \rangle_h,$$

here $\langle ., . \rangle_h$ is the hermitian product h.

In order to define harmonic metrics, we need an interpretation of hermitian metrics in terms of equivariant maps. Set

 $D := SL_n(\mathbb{C})/SU(n) = \{ \text{positive hermitian matrices } M \text{ with } \det M = 1 \}.$

We have an action on $SL_n(\mathbb{C})$ on D given by

$$g.M = (g^{-1})^* M g^{-1}.$$

Proposition 2. A hermitian metric on E is equivalent to a ρ -equivariant map

$$u:\widetilde{\Sigma}\longrightarrow D,$$

that is a map satisfying $u(\gamma x) = \left(\rho(\gamma)^{-1}\right)^* u(x)\rho(\gamma)^{-1}$.

Proof. Let u be such a map and s be a section of E seen as an ρ -equivariant map $s: \widetilde{\Sigma} \longrightarrow \mathbb{C}^n$. Define

$$||s||_u(x) := \langle s(x), u(x)s(x) \rangle_{\mathbb{C}^n}.$$

We easily check that

$$|s||_{u}^{2}(\gamma x) = \langle \rho(\gamma)s(x), \left(\rho(\gamma)^{-1}\right)^{*}u(x)s(x)\rangle_{\mathbb{C}^{n}} = ||s||_{u}^{2}(x).$$

So $||s||_u^2$ is ρ -invariant and descends to a function over Σ .

On the other hand, let h be a hermitian metric on E and take s_1 and s_2 two sections of E. Take $x \in \Sigma$, $\tilde{x} \in \tilde{\Sigma}$ and choose $\tilde{s}_i : (\tilde{\Sigma}) \longrightarrow \mathbb{C}^n$ two ρ -equivariant maps representing s_i . It follows that there exists a $u(\tilde{x}) \in D$ so that

$$\langle s_1(x), s_2(x) \rangle_h = \langle \widetilde{s_1}(\widetilde{x}), u(\widetilde{x}) s_2(\widetilde{x}) \rangle_{\mathbb{C}^n}.$$

As the right hand side is ρ -invariant,

$$\langle \widetilde{s_1}(\widetilde{x}), u(\widetilde{x}) s_2(\widetilde{x}) \rangle_{\mathbb{C}^n} = \langle \rho(\gamma) \widetilde{s_1}(\widetilde{x}), u(\widetilde{\gamma x}) \rho(\gamma) s_2(\widetilde{x}) \rangle_{\mathbb{C}^n}.$$

It follows that $u(\tilde{x}) = \rho(\gamma)^* u(\gamma \tilde{x}) \rho(\gamma)$, and so *u* is ρ -equivariant.

Note that D carries an invariant metric (the Killing metric), and we denote by ∇ the associated Levi-Civita connection. So, **given a metric** g on Σ , one can define the energy of a Hermitian metric $u \in W^{1,2}_{\rho}(\widetilde{\Sigma}, D)$

(the Sobolev space of ρ -equivariant map admitting a weak differential in L^2) by:

$$\mathscr{E}_{\rho}(u) := \frac{1}{2} \int_{\Sigma} \|du\|^2 dv_g.$$

Here, $du \in \Gamma(T^*\widetilde{\Sigma} \otimes u^*TD)$, the norm of du is taken with respect to the product metric and dv_g is the area form associated to g. Note that the integral is well-defined as $||du||^2$ is ρ -invariant and so descends to a function on Σ .

Remark 1. The energy of u only depends on the conformal class of g. So the energy of a hermitian metric u can be defined for each complex structure on Σ .

Definition 6. A harmonic metric is a $\mathscr{C}^2 \rho$ -equivariant map $u : \widetilde{\Sigma} \longrightarrow D$ which is a critical point of the energy functional.

We would like a local description of harmonic metrics. Given a ρ -equivariant map u, one can associate its **tension field**

$$\tau(u) := d_{\nabla}^* du,$$

where d_{∇}^* is the dual of the covariant derivative of forms with value in u^*TD .

Proposition 3. Let $\psi := \frac{d}{dt}_{|t=0} u_t$ where $(u_t)_{t\in I}$ is a smooth path of ρ -equivariant maps with $u_0 = u$. We have the following:

$$\frac{d}{dt}_{|t=0} \mathscr{E}_{\rho}(u_t) = \int_{\Sigma} \langle \tau(u), \psi \rangle dv_g,$$

where $\langle .,. \rangle$ is the scalar product with respect to the pull-back by u of the Killing metric on D.

Proof. Note that we have $\frac{d}{dt}_{|t=0}du_t = d_{\nabla}\psi$. It follows that

$$\frac{d}{dt}_{|t=0} \mathscr{E}_{\rho}(u_{t}) = \frac{d}{dt}_{|t=0} \frac{1}{2} \int_{M} ||du||^{2} dv_{g}$$

$$= \int_{\Sigma} \langle d_{\nabla} \psi, du \rangle dv_{g}$$

$$= \int_{\Sigma} \langle \psi, d_{\nabla}^{*} du \rangle dv_{g}.$$

Corollary 1. A \mathscr{C}^2 ρ -equivariant map u is a harmonic metric if and only if $\tau(u) = 0$.

We are now ready to state the main theorem:

Theorem (Corlette-Donaldson-Labourie). The following are equivalent:

- (1) The G-orbit of a flat connection A admits a harmonic metric.
- (2) The representation $\rho_A \in Hom(\pi_1\Sigma, G)$ is reductive.

Note that this theorem provides an identification, when fixing a complex structure on Σ , between the moduli space of flat reductive connections and the moduli space of harmonic bundles.

3. Proof

$$(1) \Longrightarrow (2)$$

Suppose u is a harmonic metric and ρ is not reductive. Let $E_1 \subset E$ be an ∇ -invariant sub-bundle and let E_2 its orthogonal complement. Denote by $n_i = \dim E_i$. The flat connection ∇ decomposes as follow (using the metric u):

$$A = \begin{pmatrix} A_1 & \beta \\ 0 & A_2 \end{pmatrix} = d_A + \Psi = \begin{pmatrix} d_{A_1} + \Psi_1 & \beta \\ 0 & d_{A_2} + \Psi_2 \end{pmatrix}$$

where $\beta \in \Omega^0(X, Hom(E_1, E_2))$ is called the second fundamental form, the d_{A_i} are unitary and $\Psi_i \in \Omega^1(X, i\mathfrak{su}(n_i))$. One easily checks that

$$\Psi = \left(\begin{array}{cc} \Psi_1 & \frac{1}{2}\beta\\ \frac{1}{2}\beta^* & \Psi_2 \end{array}\right),$$

and that

$$\mathscr{E}_{\rho}(u) = \|\Psi\|^{2} = \|\Psi_{1}\|^{2} + \|\Psi_{2}\|^{2} + \|\beta\|^{2}.$$

Let $\xi = (-n_2)_{|E_1} \oplus n_1|_{E_2} \in Lie(\mathscr{G})$. Let

$$u_t := \exp(t\xi)u.$$

We obtain

$$\|\Psi_t\|^2 = \|\Psi_1\|^2 + \|\Psi_2\|^2 + e^{-tn/2}\|\beta\|^2$$

But, as *u* is harmonic, $\frac{d}{dt}|_{t=0} ||\Psi_t|| = 0$, so $\beta = 0$ which gives a contradiction. (2) \implies (1)

3.1. **Definitions and notations.** Let (M, g) be a Riemannian manifold and $E \longrightarrow (M, g)$ be a complex vector bundle equipped with a hermitian metric. For $\eta, \xi \in \Gamma(E)$, one defines the scalar product

$$\langle \eta, \xi \rangle_E := \int_M (\eta, \overline{\xi}) dv_g.$$

Recall that the metric on E induces a covariant derivatives on forms with value in E that we denote

$$d_{\nabla}: \Gamma(E) \longrightarrow \Gamma(T^*M \otimes E).$$

For $k \in \mathbb{N} \cup \{\infty\}$ and $\alpha \in (0, 1)$, we define the following vector spaces:

- $\mathscr{C}^k(E) = \{ \text{sections of E which are } \mathscr{C}^k \}$
- $\mathscr{C}_0^k(E) = \{\eta \in \mathscr{C}^k(E), \text{ so that } \eta \text{ has compact support}\}\$

$$\mathscr{C}^{k,\alpha}(E) = \{ \eta \in \mathscr{C}^k(E), \ d^k_{\nabla} \eta \in \mathscr{C}^{0,\alpha}((T^*M)^{\otimes k} \otimes E) \}$$

- $L^2(E) = \{\eta \in \Gamma(E), \ \|\eta\|_E^2 := \langle \eta, \overline{\eta} \rangle_E < +\infty \}.$
- $L^{p}(E) := \{ \eta \in \Gamma(E), \int_{M} \|\eta\|^{p} < +\infty \}$
- $W^{k,p}(E) := \{ \eta \in L^p(E), \forall i = 1, ..., k, d^i_{\nabla} \eta \in L^p((T^*M)^{\otimes i} \otimes E) \}$
- $W_{loc}^{k,p} := \{ \eta \in \Gamma(E), \ \forall K \subset M \text{ compact }, \eta_{|K} \in W^{k,p}(E_{|K}) \}.$

Remark 2. When E is the trivial vector bundle, we denote these spaces by $L^p(M)$... They identify with spaces of functions over M.

Given $\eta \in L^p(E)$, we define:

$$\|\eta\|_{L^p} := \left(\int_M \|\eta\|^p dv_g\right)^{1/p},$$

and for $\eta \in W^{k,p}(E)$,

$$\|\eta\|_{W^{k,p}}^2 := \sum_{i=0}^k \|d_{\nabla}^i \eta\|_{L^p}^2.$$

With these norms, $L^{p}(E)$ and $W^{k,p}(E)$ are Banach spaces. Note that in the definition of $W^{k,p}(E)$, we only assume that the *i*-th covariant derivative exists in a weak sense (that is in the sense of distributions). We recall the Sobolev embedding Theorem

Proposition 4. (Sobolev Embedding Theorem) $W_{loc}^{j+k,p}(E) \subset \mathscr{C}^{j,\alpha}(E)$ for all $\alpha \in \left(0, k - \frac{m}{p}\right)$ (where $m = \dim M$).

Also, we recall the multiplication law for Sobolev spaces:

Proposition 5. (Multiplication Law) If $\frac{k}{m} - \frac{1}{p} > 0$, then $W_{loc}^{k,p}(M)$ is a Banach algebra (that is, the multiplication of functions in $W_{loc}^{k,p}(M)$ are in $W_{loc}^{k,p}(M)$).

3.2. Gradient flow for harmonic maps. Let $u : \widetilde{\Sigma} \longrightarrow D$ be a ρ -equivariant map so that $du \in L^2(T^*\widetilde{\Sigma} \otimes u^*TD)$ (we say that $u \in W^{1,2}_{\rho}(\widetilde{\Sigma}, D)$). We define the following equation for $u : M \times I \longrightarrow D$:

$$\begin{cases} \partial_t u_t &= -\tau(u_t) \\ u(.,0) &= u \end{cases}$$

where $u_t = u(., t)$.

Note that, if a solution u(.,t) exists for some t, then it is also ρ -equivariant. In a coordinates system, this equation looks like:

(1)
$$\begin{cases} (\partial_t - \Delta)u_t^a &= \Gamma_{bc}^a(u_t)\nabla u_t^b \nabla u_t^c \\ u(.,0) &= u, \end{cases}$$

where Γ_{bc}^{a} are the Christoffel symbols of D and Δ is the Laplace-Beltrami operator on (M, g).

Short time existence.

Short time existence for the gradient flow of harmonic maps with boundary has been proved by R. Hamilton [Ham75]. The proof is based on a Implicit Functions Theorem. It consists in proving that the equation

(2)
$$(\partial_t - \Delta + a\nabla + b)f = g,$$

where a and b are smooth and $g \in L^p(\Sigma \times [0, t_0])$ (for some $t_0 > 0$) always admits a unique solution $f \in W^{2,p}(\Sigma \times [0, t_0])$ (with good boundary conditions). In other words, the operator

$$\begin{array}{rccc} L: & W^{2,p}(\Sigma \times [0,t_0]) & \longrightarrow & L^p(\Sigma \times [0,t_0]) \\ & f & \longmapsto & (\partial_t - \Delta)f + b\nabla f + cf \end{array}$$

is an isomorphism.

6

We look for a solution of equation (1) of the form $u = u_b + v$ where u_b is a fixed smooth function satisfying the boundary conditions and $v \in W^{2,p}(\Sigma \times [0, t_0])$. Let $P: W^{2,p}(\Sigma \times [0, t_0]) \longrightarrow L^p(\Sigma \times [0, t_0])$ the operator defined by

$$P(v) = \partial_t (u_b + v) + \tau (u_b + v).$$

The differential of P at 0 has the form of equation (2) and so is an isomorphism. By the Implicit Function Theorem for Banach spaces, P maps a neighborhood U of 0 in $W^{2,p}(\Sigma \times [0, t_0])$ to a neighborhood V of $P(u_b)$ in $L^p(\Sigma \times [0, t_0])$.

For $\epsilon > 0$ small enough, the function f equal to 0 for $t \in [0, \epsilon)$ and equal to $P(u_b)$ for $t \in [\epsilon, t_0]$ will be in V. It follows that there exists a function $v \in U$ so that $P(u_b + v) = f$. It means that $u_b + v$ will be solution of equation (1) for $t \in [0, \epsilon)$.

Remark 3. As it is often the case for non-linear parabolic equations, we can prove in this case that if the maximal time existence T_{max} for a solution to equation (1) is finite, then

$$\lim_{t \to T_{max}} \|\nabla u_t\| = +\infty.$$

Long time existence

To prove the long time existence for the gradient flow, we only need to get a uniform bound on $\|\nabla u_t\|$ (it is a consequence of Remark 3) where u_t is a solution of equation (1). At this point, the curvature of the target space plays an important role. In fact, the energy density $e_t = \frac{1}{2} \|du_t\|^2$ satisfies the so-called Bochner-Eells-Sampson formula (see [ES64]):

$$(\partial_t - \Delta)e_t = -\|\nabla du_t\|^2 - Ric_X(du_t, du_t) + R_D(du_t, du_t, du_t, du_t),$$

where Ric_X is the Ricci curvature tensor of X and R_D is the Riemann curvature tensor of D. As D is a symmetric space of non-compact type, $R_D \leq 0$. Moreover Ric_X is bounded from below. It follows that e_t satisfies

$$(\partial_t - \Delta)e_t \leqslant Ce_t,$$

for some C > 0. We say that e_t is a subsolution of the heat equation.

Now, we use the classical Moser's Harnack inequality for subsolutions of the heat equation:

Proposition 6. (Moser's Harnack inequality) Let (M, g) a Riemannian manifold and $v: M \times [0, T] \longrightarrow \mathbb{R}$ be a non-negative function. If there exist $(x_0, t_0) \in M \times [0, T]$ and R > 0 so that for all $(x, t) \in B(x_0, R) \times [t_0 - R^2, t_0]$ (where $B(x_0, R)$ is the radius R ball centred at x_0) we have

$$(\partial_t - \Delta)v \leq Cv, \text{ for } C > 0,$$

then there exists a C' > 0 so that

$$v(x_0, t_0) \leq C' R^{-(m+2)} \int_{s=t_0-R^2}^{t_0} \int_{B(x_0, R)} v(x, s) dv_g ds.$$

Here $m = \dim M$.

Applying this to $e(x_0, t_0)$ for $(x_0, t_0) \in \Sigma \times [1, T_m ax)$ and R < 1, we get

$$\begin{array}{lcl} e_t(x_0, t_0) &\leqslant & C' R^{-4} \int_{s=t_0 - R^2}^{t_0} \int_{B(x_0, R^2)} e(x, s) dv_g ds \\ &\leqslant & C' R^{-4} \int_{s=t_0 - R^2}^{t_0} \mathscr{E}(u_s) ds \end{array}$$

But, note that, as u satisfies equation (1), we have

$$\frac{d}{dt}\mathscr{E}(u_t) = -\|\tau(u_t)\|^2,$$

and so

$$\mathscr{E}(u_t) = \mathscr{E}(u_0) - \int_{s=0}^t \|\tau(u_s)\|^2 ds.$$

In particular $\mathscr{E}(u_t) \leq \mathscr{E}(u_0)$ and

$$e_t(x_0, t_0) \le C' R^{-2} \mathscr{E}(u_0).$$

For $t \in [0, 1]$, consider the function

$$a(.,t) = \exp(-Ct)e(.,t).$$

Such a function satisfies

$$(\partial_t - \Delta)a \le 0.$$

Using the maximum principle, we get that $a(x,t) \leq \max_{x \in \Sigma} a(x,0)$, and so

$$e(x,t) \le ||u_0||e^{Ct} \le ||u_0||e^{Ct}$$

In particular, the norm of the gradient of u_t is uniformly bounded and solution to the gradient flow exists to all time.

Convergence to a solution

As $\mathscr{E}(u_t) = \mathscr{E}(u_0) - \int_0^l ||\tau(u_s)||^2 ds \leq 0$, there exists an unbounded increasing sequence $(n_i)_{i \in \mathbb{N}} \subset \mathbb{R}_{>0}$ so that the sequence $(u_i)_{i \in \mathbb{N}}$ where $u_i := u_{n_i}$ satisfies

$$\tau(u_i) \xrightarrow{L^2} 0.$$

It follows that $(u_i)_{i \in \mathbb{N}}$ is a sequence of ρ -equivariant Lipschitz map with uniformly bounded Lipschitz constant.

Proposition 7. If ρ is irreducible, then $u_i \xrightarrow{\mathscr{C}^{0,1}} u_\infty$ where u_∞ is ρ -equivariant.

Proof. We claim that as ρ is irreducible, u_i is bounded. In fact, let $p \in \tilde{\Sigma}$ and suppose that $h_i := u_i(p)$ is not bounded (see h_i as a determinant one matrix). Choose a sequence $(\epsilon_i)_{i \in \mathbb{N}} \subset \mathbb{R}_{>0}$ so that $\epsilon_i h_i \longrightarrow h_\infty \neq 0$. Let $V := \operatorname{Ker}(h_\infty)$. Note that V is a proper subspace of \mathbb{C}^n (because $V \neq \mathbb{C}^n$ as $h_\infty \neq 0$ and $V \neq 0$ as det $h_\infty = 0$).

We claim that V is stable by $\rho(\pi_1(\Sigma))$. In fact, let $g^{-1} := \rho(\gamma)$, and $v \in V$. As the u_i are ρ -equivariant, $d(u_i(p), u_i(p)g^{-1})$ is uniformly bounded as so is $|\langle h_i v, w \rangle - \langle h_i g v, g w \rangle|$ for all $w \in \mathbb{C}^n$. It follows that

$$|\langle \epsilon_i h_i v, w \rangle - \langle \epsilon_i h_i g v, g w \rangle| \longrightarrow 0.$$

As $v \in V$, we get that $\langle h_{\infty}gv, gw \rangle = 0$ for all $w \in \mathbb{C}^n$ and so $gv \in V$. \Box

8

It follows that $(u_i)_{i \in \mathbb{N}}$ converges to a weak solution of the harmonic equation.

We want to prove that u_{∞} is a strong solution. We have that u_{∞} satisfies (in the weak sense)

$$\Delta u^a_{\infty} + \Gamma^a_{bc}(u_{\infty}) \nabla u_{\infty} u^b \nabla u^c_{\infty} = 0.$$

As $u_i \xrightarrow{\mathscr{C}^{0,1}} u_\infty$, then $u_i \xrightarrow{W_{loc}^{1,p}} u_\infty$ for all p > 1. Hence $\nabla u_\infty^b, \nabla u_\infty^c \in L_{loc}^p(\widetilde{\Sigma})$ and so $\nabla u_\infty^b \nabla u_\infty^c \in L_{loc}^{p/2}(\widetilde{\Sigma})$. It follows that $\Delta u_\infty^a \in L_{loc}^{p/2}(\widetilde{\Sigma})$ and so, by Schauder estimates,

$$u_{\infty}^{a} \in W_{loc}^{2,p/2}(\widetilde{\Sigma})$$
 for all $p > 1$.

As $u^a_{\infty} \in W^{2,p}_{loc}(\widetilde{\Sigma})$ then $\nabla u^b_{\infty}, \nabla u^c_{\infty} \in W^{1,p}_{loc}(\widetilde{\Sigma})$. For $p > 0, \frac{1}{2} - \frac{1}{p} > 0$, the multiplication law implies that $\nabla u^b_{\infty} \nabla u^c_{\infty} \in W^{1,p}_{loc}(\widetilde{\Sigma})$ and so $u^a_{\infty} \in W^{3,p}_{\underline{loc}}(\widetilde{\Sigma})$.

Finally, by Sobolev Embedding Theorem, we get that $u_{\infty}^{a} \in \mathscr{C}^{2}(\widetilde{\Sigma})$ and so u_{∞} is a harmonic metric.

References

- [Cor88] K. Corlette, Flat G-bundles with canonical metrics, J. Differential Geom. 28 (1988), no. 3, 361–382. MR 965220 (89k:58066)
- [ES64] J. J. Eells and J. H. Sampson, *Harmonic mappings of Riemannian manifolds*, Amer. J. Math. 86 (1964), 109–160. MR 0164306 (29 #1603)
- [Gri09] A. Grigor'yan, Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, vol. 47, American Mathematical Society, Providence, RI; International Press, Boston, MA, 2009. MR 2569498 (2011e:58041)
- [Ham75] R. S. Hamilton, Harmonic maps of manifolds with boundary, Lecture Notes in Mathematics, Vol. 471, Springer-Verlag, Berlin-New York, 1975. MR 0482822 (58 #2872)
- [LW08] F. Lin and C. Wang, The analysis of harmonic maps and their heat flows, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. MR 2431658 (2011a:58030)
- [Wen12] R. A. Wentworth, Higgs bundles and local systems on riemann surfaces, Lecture notes from the third interational school on geometry and physics at the CRM (2012).