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Abstract

Notes for the expository talk on the proof in [Lab14] of Labourie’s
conjecture in rank 2, given at the Workshop “Higgs Bundles and Harmonic
Maps” in Asheville, NC.

In this talk I will present some recent results by François Labourie in [Lab14]
proving a special case of a conjecture of his owns (also stated by Bill Goldman,
see [Lab06, Gol10]). These notes are organized as follows: The first section
includes some preliminaries on Lie theory and the Hitchin component, mostly
to fix notations. In the second section we will introduce Labourie’s version of
Hitchin’s map and state the Conjecture (about it being a homeomorphism); the
third section introduces cyclic objects. In the final section we reduce Labourie’s
conjecture in rank 2 (or, rather, the fact that the map is an immersion, the only
part of the statement that is still conjectural) to some more technical but easier
statement about cyclic maps, the proof of which we sketch.

Acknowledgments: A big thank to the organizers of the workshop (Brian
Collier, Qiongling Li and Andy Sanders) for the huge preparation work, the
amazing location and the stimulating environment!

1 Lie group preliminaries and Hitchin’s compo-
nent

1.1 Lie groups fundamentals

The proof of most of these statement will not be part of my talk. To fix notations
and signs, I will try to present the following results only by depicting the picture
for SL3pRq, by writing down matrices. Here we focus on (a split real form of)
GC “ SL3pCq for brevity. Remark that we will not be working literally with
SL3pRq: There are choices that have an effect on every other choice, the usual
Cartan algebra and involution give another (isomorphic, of course) split real
form G0. Fix a Cartan subalgebra h Ă gC “ sl3pCq, that has rank 2. We make
the usual choice of the (trace-zero) diagonal matrices. For each α in the dual
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h˚ we define the root spaces:

gα “
 

u P gC : @h P h, rh, us “ αphqu
(

This is either 0 or has dimension one; in the last case we call α a root, and
denote by ∆ the set of roots. In the case of sl3pCq, considering the basis of h
given by h1 “ diagp1,´1, 0q and h2 “ diagp0, 1,´1q, we have an associated dual
basis λ1, λ2. The set of roots is

∆ “

!

α1 “ 2λ1 ´ λ2, α2 “ 2λ2 ´ λ1, η “ α1 ` α2 “ λ1 ` λ2,´α1,´α2,´η
)

.

Each of these has a 1-dimensional root space, spanned, in the same order, by
x12, x23, x13, x21, x32, x31, where xij is a matrix having zeros everywhere except
for a 1 in position pi, jq. Remark that gC is the direct sum of h and the span of
these elements, as it should.

The set of roots is uniquely determined; however, one chooses in a non-
unique way a set of positive roots ∆`, with the property that for every α P ∆
exactly one between α and ´α is in ∆` and that the sum of positive roots
stays positive. The standard choice is α1, α2 and η. Given this choice there
is a unique subset of simple roots Π, of cardinality exactly the rank (2 in this
case), and such that no simple root is the sum of two other positive roots (here,
clearly α1 and α2 are the simple ones in ∆`). For every root α define the coroot
hα as the unique element in the complex line rgα, g´αs such that αphαq “ 2
(the alternative definition used by Labourie is equivalent to this). In our case
we have hα1

“ h1 and hα2
“ h2, so we may safely drop the α in the index

(although in general, of course, hαi
is well-defined, while our choice of hi was

arbitrary). Furthermore, hη “ h1`h2 “ diagp1, 0,´1q and h´α “ ´hα, clearly.
Define a Chevalley system following [Bou05], Chapter VIII, §2, Definition 3

(the definition in Labourie’s preprint seems unfortunately to have some incon-
sistent signs) by the following conditions:

Xα P gα, rXα, X´αs “ hα, the map

$

&

%

g Ñ g
h Q h ÞÑ ´h
Xα ÞÑ X´α

is an automorphism.

In our case, Xα1 “ x12, Xα2 “ x23 and Xη “ x13. Remark that trivially
rXα, Xβs P gα`β . So, if α ` β P ∆, we can define Nαβ so that rXα, Xβs “

NαβXα`β , and these turn out to be integers, more exactly Nαβ is (up to a sign)
one plus the biggest integer q such that α´ qβ is a root.

In general, for fixed ∆`, we denote by η the longest root, that is the unique
positive root such that there is no other positive root α such that η`α is again
a root. We introduce the following two elementary but fundamental subsets of
∆:

Definition 1.1. Fix a Cartan subalgebra and a set of simple roots Π. The set
of cyclic roots Z is the union of ´Π and tηu. The set of conjugate cyclic roots
Z: is ´Z, i.e. the union of symple roots and the negative of the longest root.
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1.2 Kostant’s principal subalgebras

The following is due to Kostant. For every complex Lie algebra gC, once a set
of positive root ∆` is fixed, one can define the principal sl2pCq in it by:

a “
1

2

ÿ

αP∆`

hα “:
ÿ

αiPΠ

rαi
hαi

; X “
ÿ

αiPΠ

?
rαi

xαi
; Y “

ÿ

αiPΠ

?
rαi

x´αi

In our case, a “ hη “ diagp1, 0,´1q (beware that this is just a coincidence!), so
that rαi

“ 1, and X “ x12 ` x23, Y “ x21 ` x32 are the 3 ˆ 3 Jordan blocks
with 0 on the diagonal. This generates a subalgebra, isomorphic to sl2pCq, in
particular ra,Xs “ X, ra, Y s “ ´Y and rX,Y s “ a. The following fact is due
to Kostant and crucial:

degpαq “ αpaq for every root α.

Working in a more invariant way, one can define a principal subalgebra to be
a copy of sl2pCq containing an element conjugate to a, and an h-principal sub-
algebra as one such that a P h. We will not really have to care about these
invariant things, but everything works just fine. Even better, Kostant proved
that any two principal subalgebras are conjugated, and any two h-principal are
conjugated by elements of (the Lie subgroup associated to) h. For us, the most
relevant part of Kostant’s work is the following decomposition:

Proposition 1.2 (Kostant). With notation as above, let s be a principal sub-
algebra. There are well defined (increasing) integers m1, . . . ,m`, where ` “
rkpGCq, called the exponents of GC, such that the Lie algebra decomposes as a
direct sum of irreducible representations of s:

gC “
à̀

i“1

vi, dimCpviq “ 2mi ` 1, v1 “ s.

In particular, the dimensions in rank 2 are easy to compute (since m1 = 1
always and in this case dimpGCq “ 2m2 ` 2m1 ` 2), and actually for SLpn,Cq
the exponents are just mi “ i. We will also use the other decomposition gC “
Àm`

m“´m`
gm, where gm is the set of elements u P gC such that ra, us “ mu (a

is semisimple, so this always gives a decomposition of the whole of gC). Since
every vi is a representation of s, in particular there is an element ei P vi of
highest weight (defined up to a multiple). By additivity of weights, necessarily
rX, eis “ 0. Also, clearly, ei P gmi

. Then every vi is simply spanned by
ei, adY peiq, . . . , ad2mi

Y peiq.
Let’s be more explicit in our situation gC “ sl3pCq, where things are well

depicted (actually, every slnpCq works in the same way). Here every ei lives on
the i-th diagonal, and taking adY “lowers” the diagonal by one. For n “ 2 there
is but one choice (up to multiples):

e1 “ X “

¨

˝

0 1 0
0 0 1
0 0 0

˛

‚; e2 “ x13; adY pe2q “

¨

˝

0 ´1 0
0 0 1
0 0 0

˛

‚; ad2
Y pe2q “

¨

˝

1 0 0
0 ´2 0
0 0 1

˛

‚P h,
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et cetera. It is clear that Xη P gm`
is equal to em`

, in all generality.
Now we fix a Cartan involution that keeps h invariant. Here there is some

ambiguity in general, we choose the standard one: ρpuq “ ´u˚ (here ˚ de-
notes the transpose conjugate). This is a compact real form. The Killing
form is (up to a multiple) given by xu|vy “ tracepu ¨ vq. With these choices,
one gets the Frobenius Hermitian product by combining the two of them, i.e.
xu, vy “ tracepuv˚q. These objects behave very well with respect to the root
decomposition gC “ h‘

À

α gα, that is orthogonal with respect to x¨, ¨y. In gen-
eral, we pick the unique Cartan involution associated to the Chevalley system,
i.e. we define X˚α “ X´α (it preserves h, but of course it is not the identity
there, since h is complex and ˚ is anti-linear). There are two more real forms
we need to introduce, linked to each other.

Proposition 1.3 (Kostant, Labourie). For fixed h, ∆`, an h-principal s and
ρ as above, there exists a unique C-linear involution σ that preserves globally
both h and s, such that λ “ σ ˝ ρ “ ρ ˝ σ, such that the real form G0 :“ Fixpλq
is split, σphηq “ hη and σ globally preserves gZ “

À

αPZ gα and gZ: .

Let us see who are these elements in the case of gC “ sl3pCq. As anticipated,
G0 will not be the usual SL3pRq (hence, σ is not the complex conjugation). The
construction by Kostant asks: σpeiq “ ´ei for every i as well as σpY q “ ´Y . In
particular, on adiY peiq, σ acts as p´1qi`1 (for example, σpaq “ σprX,Y sq “ a).
These objects together generate gC, so that we may decompose gC in eigenspaces
for σ as follows:

Kerpσ ` Idq “

"

¨

˝

a b d
c ´2a b
f c a

˛

‚

*

, Kerpσ ´ Idq “

"

¨

˝

g h 0
j 0 ´h
0 ´j ´g

˛

‚

*

,

where a, b, c, d, f, g, h, j P C. Remark that in particular the fixed points of this
need not be half-dimensional. The composition λ “ σ˝ρ, then, has the following
set of fixed points:

g0 “ Kerpλ´Idq “

"

¨

˝

x` iy t` v ` ipu` wq r ` is
t´ v ` ipw ´ uq ´2x t´ v ` ipu´ wq

r ´ is t` v ´ ipu` wq x´ iy

˛

‚

*

,

(1)
where now r, s, t, u, v, w, x, y P R. In general, the fixed points of σ are the
complexification of the maximal compact subalgebra k0 of g0 (since they are the
complexification of Fixpρq X FixpΛq), which in this case must be isomorphic to
sop3q, and thus has dimension 3 as expected.

1.3 Intermezzo: Homogeneous spaces and Maurer-Cartan
forms

In the following, we will be dealing with two different homogeneous spaces.
Although we do not need much of their geometry, I collect here some results we
will need to uniformize the notations.
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A homogeneous space X is a space on which a Lie group G acts in a smooth
and transitive way. Fix a point x0 P X and let C be its stabilizer (the set of
elements g P G such that g ¨ x0 “ x0). Then the left multiplication gives an
equivariant isomorphism:

X – G{C.

This is the aspect that our homogeneous spaces will always have. Also, we
assume C to be a compact subgroup. Let g be the Lie algebra of G and c that
of C. We will also assume that the homogeneous space is reductive, that is,
there is an AdpCq-invariant subspace m Ă g such that g “ c ‘ m. We get in
particular the following infinitesimal relations:

rc, cs Ă c; rc,ms Ă m. (2)

Remark that m is not a Lie-subalgebra, that is, rm,ms will not be in m. There
is a canonical map

gˆX Ñ TX

pξ, xq ÞÑ
B

Bt

´

expptξq ¨ x
¯
ˇ

ˇ

ˇ

t“0
.

(3)

Since the action is smooth and transitive, this map is surjective. Actually, more
is true: We can consider the following decomposition in subbundles of the trivial
bundle X ˆ g:

X ˆ g “ rcs ‘ rms, where rcsx “ Adxpcq, rmsx “ Adxpmq.

Although x P X, these spaces are well defined, since c and m are AdpCq-
invariant. Then the map (3) has kernel rcs and induces a bundle isomorphism
between rms and TX; this gives a right inverse of this map TX Ñ rms, known
as the Maurer-Cartan form β P Ω1prmsq Ă Ω1pgq. An extrinsic way to define it
is to take a local section s : G{C Ñ G of the projection, and to define:

βpvq “ πrms

´

dsxpvq ¨ spxq
´1

¯

.

The projection onto rms gets rid of the dependence on the chosen section s.
There is a trivial flat connection d on the trivial bundle Xˆg. In general, this

does not preserve the splitting rcs‘rms. We introduce the canonical connection
∇, defined by:

∇v “ dv ´ adpβqpvq, v P Ω0prmsq.

Actually, one can check that the same formula gives the exterior differential d∇

when v P Ωpprmsq is a p-form, where one defines

adpβqpvq “ rβ ^ vs

as the wedge product on the form part and the Lie bracket on the Lie algebra
part. There is no harm in extending this to sections of the whole trivial bundle
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X ˆ g, i.e. to functions X Ñ g. The following formulas are straightforward,
although not immediate, to check (see for example [BR90], Chapter 1):

dβ “
`

1´
1

2
πrms

˘

rβ ^ βs i.e. d∇β “ ´
1

2
πrmsrβ ^ βs;

T∇ “ d∇β “ ´
1

2
πrmsrβ ^ βs; (4)

R∇ “ ´
1

2

”

`

1´ πrms
˘“

β ^ β
‰

^ β
ı

“ ´
1

2

”

`

2d∇β ` rβ ^ βs
˘

^ β
ı

,

Before returning to our main subject, let us mention the best-known (and
easiest to deal with) of the homogeneous spaces, the symmetric ones. These are
characterized in a certain way by the existence of an involution preserving C;
for us, the following infinitesimal relation, that completes (2), will be enough:

rm,ms Ă c.

In this case, the relations in (4) simplify greatly, becoming d∇β “ 0 and T∇ “ 0.
Also, R∇ “ ´ 1

2

“

rβ ^ βs ^ β
‰

. This is the expression for the curvature of the
Levi-Civita connection for a symmetric space. One can see that in this case the
stabilizer C is a maximal compact subgroup K of G.

Points of a symmetric space are in bijection with Cartan involutions. In
more concrete terms, if G Ă GLrpCq, these are just positive definite Hermitian
metrics on Cr (more precisely, of the form gg˚ with g P G). We can always
consider the adjoint action G Ă GLpgq, and in this way we get a metric on
X ˆ g as follows:

xξ, ηyx “
A

Ad´1
x pξq

ˇ

ˇ

ˇ

`

Ad´1
x pηq

˘˚
E

. (5)

Here x|y denotes the Killing form and ˚ the conjugate transpose (in the case of
linear groups G, otherwise one needs to fix beforehand a Cartan involution, i.e.
a base point giving the isomorphism between the symmetric space and G{K,
as in the beginning). This is well defined by invariance of the Killing form and
because K is unitary.

In the general picture at the beginning of this subsection, since we asked C
to be compact, it is contained in a maximal compact subgroup K. We get a
projection map

G{C Ñ G{K

that allows us to read, in particular, all of the structure we introduced for G{K
on G{C, too. In particular, the Hermitian product (5) gives a notion on ξ˚ on g
(which is, at every point, just the opposite of the Cartan involution given by the
point). It is then very easy to check that the Maurer-Cartan forms are related
as follows:

βG{K “
1

2

`

βG{C ` β
˚
G{C

˘

.

In the following, as Labourie does, we will write ω “ βG{C when C “ T is a
compact torus.
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1.4 Hitchin triples

A triple ph, ρ, λq as in Proposition 1.3 will be called a Hitchin triple. Such objects
exist and are unique, essentially by the same proposition. Let X be the set of
these triples. The complex group GC acts on X by conjugation, and one sees
easily that the stabilizer of a given point ph, ρ, λq is a compact torus T having
Lie algebra t “ g0XhXk (i.e. the intersection of the Cartan subalgebra with the
maximal compact subalgebra of the split algebra g0 given by ρ). Clearly, the
rank of t is bounded by that of h, in our case 2. It is known that sl3pRq cannot
have a 2-dimensional compact subtorus (“SL3pRq is not of Hodge type”), so t
must have dimension 1 in this case. In our case, by taking only skew-adjoint
elements in (1), we see that t is generated by ihη i.e. with the notation as in
(1), only y can be non-zero. It is also known that the other two rank 2 split real
group are of Hodge type, so in those cases tC “ h. Anyway, the upshot is:

X – GC{T is a homogeneous space.

Writing h “ t ‘ h0, where h0 is the orthogonal with respect to x¨, ¨y (or x¨|¨y,
equivalently), by the root spaces decomposition we can identify

TeTX – m “ h0 ‘
à

αP∆

gα.

The fundamental point will be that a Hitchin representation gives a parallel
Hitchin triple, and vice versa. This is just a restatement of Hitchin’s construc-
tion in [Hit92] §6. More of this in Section 3 and Theorem 3.5. To explain
parallelness, as in subsection 1.3, introduce the connection

∇ :“ D ´ adpωq, (6)

which preserves the decomposition gC “ rts ‘ rms. The following is elementary
but fundamental:

Lemma 1.4. Every GC-equivariant section is automatically ∇-parallel.

In particular, ρ and λ are, as well as the subbundles of X ˆ gC constructed
by taking a T -invariant subspace of gC (for example, h) and pushing it around
to construct a bundle (in this case, rhs, also denoted by H in Labourie’s paper).
Together with (4), this gives:

Corollary 1.5. R∇ identifies with a rts-valued 2-form.

First of all, the “identifies with a 2-form” is the usual way of seeing the
curvature as a 2-form, that in (4) emerges by writing it as the 2-form F “

d∇ω ` rω ^ ωs wedged with ω (that is just the identification of TX with rms).
The rest of the corollary follows at once from the fact that rg0s, rks and rhs
are all invariant (by the above discussion) and self-normalizing (by classic Lie
algebra arguments): For every section η of TX, we have

R∇η “ ´d∇
pd∇ηq,
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so for example if η P rhs, then R∇η P Ω2prhsq, but also R∇η “ rF, ηs so by
self-normalization F P Ω2prhsq.

Now let M be a Riemannian manifold, M̃ its universal cover and π1pMq its
fundamental group. One sees quickly that it is equivalent to give a (conjugacy
class of a) representation ρ : π1pMq Ñ G and a ρ-equivariant map f : M̃ Ñ X
on the one hand and, on the other hand, a family, for every point m P M , of
Hitchin triples, together with a connection ∇ making the triple parallel, plus a
1-form ω P Ω1pM,mq such that D “ ∇` ω is flat.

To conclude the picture about Maurer-Cartan forms, we can construct an-
other homogeneous space, the symmetric space GC{K, that has its own Maurer-
Cartan form β. It is straightforward to see that β “ 1

2 pω ` ω˚q, so that ∇
descends to the Levi-Civita connection on the symmetric space as in subsection
1.3.

Following Labourie’s notations, we write

gC “ h‘ gZ ‘ gZ: ‘ g1, (7)

where gZ and gZ: are as in Proposition 1.3, and g1 are all the remaining root
spaces. Beware that this g1 has nothing to do with the one appearing in
Kostant’s decomposition gC “

À

gm! The one in that decomposition is ac-
tually the root space of simple roots, so gm“1 Ă gZ: . In the case of sl3pRq, g1

(as in (7)!) is zero, but this is specific to this setting. Accordingly, we will write
π0, π1, π “ πZ , π

: “ πZ: and ω0, ω1, φ “ ωZ and φ: “ ωZ: .

1.5 Hitchin’s section

Let Σ be a Riemann surface. In these notes, by Higgs bundle we mean a slightly
different notion than usual: If pP,Φq is a G-Higgs bundle, here we consider
the adjoint Higgs bundle pAdpP q, adpΦqq. In particular, this corresponds to
representations in the adjoint group, the bundle is always flat, and is actually
a bundle in the Lie algebra g. Giving such a Higgs bundle pG,Φq together with
a solution to the self duality equations p∇, ρq is thus equivalent to giving a
representation ρ : π1pΣq Ñ G and ρ-equivariant a harmonic map

h : Σ̃ Ñ G{K.

Indeed, in one direction, over G{K we can consider the flat Lie algebra bundle
G{Kˆg; if we pull back all the structure (i.e. Maurer-Cartan form, Levi-Civita
connection, etc.) to the trivial bundle Σ̃ˆg and project it down to a g-bundle on
Σ, we get the data needed in order to construct a flat bundle G with a harmonic
metric, hence a Higgs bundle pG,Φq. This is the point of view that will be most
useful. Recall that the self duality equations can be written as

d∇Φ “ 0; d∇Φ˚ “ 0; R∇ “ rΦ^ Φ˚s.

Recall that in the case of GC “ PSL2pCq, Hitchin constructed a Higgs bundle on

the rank 2 vector bundle V “ K´
1
2 ‘K

1
2 . Given a solution to the self duality
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equation as above, consider the totally geodesic map given by a principal sl2pCq
inside gC, that gives a harmonic map

h : Σ̃ Ñ PSL2pCq{PSOp2q ãÑ GC{K.

Kostant’s decomposition gC “
À

vi corresponds to the decomposition of the
pull-back of the Lie algebra bundle described above:

G “
à̀

i“1

S2mipV q “
à̀

i“1

K´mi ‘ ¨ ¨ ¨ ‘Kmi .

The other decomposition we mentioned may be written as G “
Àm`

m“´m`
rgms.

The amazing fact is that we can relate the two very precisely:

rgms “ gm bK
m.

Otherwise said, a “fixed” element of gm gives a section of rgms bK
´m. Recall

that by Kostant’s rule degpαq “ αpaq; in particular, αpaq “ 1 ðñ α is simple.
And Y is in gm“1 (in Kostant’s decomposition), hence it gives a section of

rg´1s bK Ă G bK;

this is exactly the Higgs field constructed by Hitchin and that corresponds to
a Fuchsian representation. To get the whole Hitchin section, we simply use all
the other highest weight vectors e1, . . . , e`: For every holomorphic differential
q “ pq1, . . . , q`q, with qi P H

0pΣ,Kmi`1q, define the Higgs bundle by

Hpqq “
´

G,Φ “ Y `
ÿ̀

i“1

ei b qi

¯

. (8)

Hitchin’s theorem is then that this gives a stable Higgs bundle, that is actually
a G0-Higgs bundle and a whole connected component of the moduli space. Also,
the map H from the Hitchin base B “

À`
i“1H

0pΣ,Kmi`1q to this component
(which we denote HitpΣ, G0q) is a homeomorphism.

2 Equivariant Hitchin map and Labourie’s con-
jecture

The Hitchin section above has a main flaw: It is highly dependent on the com-
plex structure J on Σ. This means that it does not allow to study the action on
the Hitchin component of the mapping class group of Σ. The proposed solution
to this problem is to consider the following slight variation of Hitchin’s map:
Instead of fixing J and considering differential forms that are holomorphic with
respect to it, consider the space of holomorphic differential as a bundle over the
Teichmüller space T . More exactly, we consider the vector bundle E Ñ T whose
fiber over J is given by

EJ “ H0
`

Σ,Km2`1
J

˘

‘ ¨ ¨ ¨ ‘H0
`

Σ,Km``1
J

˘

.
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Remark that we have dropped the differentials of order m1`1 “ 2, correspond-
ing to the terms that in the Higgs field (8) should pair with e1 “ X; the total
space of the resulting vector bundle E has thus the same dimension as B (since
the missing space of quadratic differentials has the same dimension 6g ´ 6 as
the Teichmüller space). We can now define Labourie’s version of the Hitchin
section:

Ψ: E Ñ HitpΣ, G0q
`

J, qm2
, . . . , qm`

˘

ÞÑ HJ

`

0, qm2
, . . . , qm`

˘

,

where HJ is the same thing as H in (8), we are only making the complex
structure J explicit here. Then we have the following:

Conjecture 2.1 (Labourie [Lab06], see also [Gol10]). The map Ψ is a homeo-
morphism.

The surjectivity of this map has been proved by Labourie in [Lab06] without
any assumption on the rank. The injectivity is actually already known for
G0 “ PSL2pRq (in this case, it follows easily from Hitchin’s paper on self-duality
equations) and G0 “ PSL3pRq; the paper we are currently discussing proves in
particular the injectivity for G0 of rank 2, that is, PSL3pRq, PSpp4,Rq and the
exceptional group G2. A way to restate the conjecture is the following:

Conjecture 2.2. Given a Hitchin representation ρ : π1pΣq Ñ G0 there exists a
unique ρ-equivariant minimal harmonic mapping.

The link between the two is the following: Given a harmonic map h, the
associated Higgs field Φ at a point x P Σ is simply the p1, 0q-part of

dChx : TC
x Σ Ñ TC

hpxqG{K
β
– rpsfpxq b C Ď gC,

where rps Ă G{K ˆ g is the subbundle of self-adjoint elements (with respect to
x¨, ¨y) and the isomorphism is given by the right Maurer-Cartan form β of G{K.
The Hopf differential of h is then defined as xΦ|Φy “ tracepΦ2q. This is clearly
a quadratic differential, and actually the only one, up to multiple constants. By
Donaldson, harmonic maps with vanishing Hopf differential are the same thing
as minimal maps. So, under the Hitchin correspondence, admitting a minimal
harmonic map is the same thing as coming from a holomorphic differential of
the form p0, qm2

, . . . , qm`
q, as in Conjecture 2.1.

3 Cyclic Higgs bundles and cyclic maps

We present here the main characters of the paper. Cyclic Higgs bundles are
those arising from the Hitchin map Ψ as follows:

Definition 3.1. Let pΣ, Jq be a Riemann surface. A Higgs bundle pG,Φq on Σ
is a cyclic Higgs bundle if it is the image under HJ of a holomorphic differential
of the form

q “
`

0, 0, . . . , 0, qm`

˘

.
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Recall the notations of Section 1: we fix a Cartan subalgebra h, a principal
subalgebra of gC and a split real form G0 of GC. We get in particular the notion
of simple and cyclic roots, and the decomposition of the Maurer-Cartan form
ω “ ω0 ` ω1 ` φ` φ

:. The second main character is the following

Definition 3.2. Let Σ be a topological surface (not necessarily closed). A
cyclic map is a map

f : Σ Ñ X “ GC{T

such that f˚ω0 “ f˚ω1 “ f˚pφ ^ φq “ f˚pφ˚ ´ φ:q “ f˚pω̄ ´ ωq “ 0, and,
furthermore, for every simple root α P Π, f˚pωαq is nowhere vanishing.

Remark 3.3. Recall that we denoted η˚ “ ´ρpηq for the adjoint of η. Also, we
write ω̄ “ λpωq to mean the conjugation with respect to the fixed real form G0.

Before seeing how these two objects are related, we state the following propo-
sition, essentially due to Baraglia, that will be fundamental.

Proposition 3.4 (Baraglia). Let pG,Φq be a cyclic Higgs bundle and p∇, ρq a
solution to the self duality equation (here, ∇ is a connection on G, and ρ is a
Cartan involution at every fiber of G). In particular, by Hitchin’s work, this
automatically gives rise to a subbundle in Cartan subalgebras rhs Ă G, a family
of Hitchin triples and all of the above structure. Then rhs is ∇-parallel.

Proof. This follows from the uniqueness of the solutions to the self-duality equa-
tion (i.e. the stability of the Higgs bundle by Hitchin). Indeed, consider the
automorphism φ of G that, under the decomposition G “

Àm`

m“´m`
rgms, acts on

every rgms by multiplication by ζmm``1, where ζm``1 is a primitive m``1-th root

of the unity. The peculiarity of cyclic Higgs bundles is that φpΦq “ ζ´1
m``1Φ,

since it has only terms in rg´1s and rgm`
s. It follows that φ˚∇ “ ∇, since both

solve the self duality equation. As rhs “ Kerpφq, the conclusion follows.

Theorem 3.5. On a closed surface, the data of a cyclic map is equivalent to
the data of a complex structure and a cyclic Higgs bundle. More precisely, given
a cyclic map on a (possibly open) surface f : Σ Ñ X, there exists a unique

compatible complex structure and the composition h : Σ
f

ÝÝÝÑ GC{T Ñ GC{K is
harmonic and gives rise to a cyclic Higgs bundle. Conversely, given a closed
Riemann surface and a cyclic Higgs bundle, there exists a unique compatible
cyclic map lifting the solution to the self duality equations.

Sketch of proof. Assume you are given a cyclic map. The claim is that there is a
unique complex structure making Φ “ f˚φ (our candidate for the Higgs field) of
type p1, 0q. This follows from f˚pφ^ φq “ 0 and f˚ωα being non-zero: Indeed,
the former in particular implies f˚pωα^ωβq “ 0 for every roots α, β P ´Π. We
may assume that α ` β P ∆, i.e. rxα, xβs ‰ 0. Now write f˚ωα “ ω̂αxα, and
similarly for β. Let Jα be a complex structure making f˚ωα of type p1, 0q and
compute:

0 “ pf˚ωα ^ f
˚ωβqpY, JαY q “

´

ω̂αpY qω̂βpJαY q ´ iω̂αpY qω̂βpY q
¯

rxα, xβs.
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Since f˚ωα never vanishes, Jα makes ωβ of type p1, 0q. This proves uniqueness,
but actually also existence (after proving, in the same way, that f˚ωη is of
type p1, 0q, as well). Then we know that Φ˚ “ Φ:, so this is of type p0, 1q
automatically. To prove that the projection to GC{K is harmonic, one simply
considers the curvature equation (4) and projects it: The projection to rhs gives
R∇ “ rΦ ^ Φ˚s, the projection to rgZs gives d∇Φ “ 0 (since d∇ preserves all
the subspaces like rgZs, by Lemma 1.4), and the one to rgZ:s gives d∇Φ˚ “ 0.
The fact that the Higgs bundle thus obtained is cyclic is just a consequence of
f˚ω0 “ f˚ω1 “ 0.

Conversely, given a cyclic Higgs bundle on a closed Riemann surface, we
can consider the associated solution to the self duality equation p∇, ρq. This
gives rise to a Hitchin triple that, by Proposition 3.4, is parallel. We already
noticed that the data of a parallel Hitchin triple and a “Maurer-Cartan form”
Ω orthogonal to rhs and making ∇`Ω flat is always induced by a map f : Σ̃ Ñ
X “ GC{T , equivariant with respect to the representation corresponding to the
Higgs bundle via the solution of the self duality equations. It is straightforward
to check that this map is cyclic. The only slightly tricky part is that for every α P
˘Π then f˚ωα never vanishes: This is due to the fact that by the construction of
Hitchin, plus the fact that e1 does not appear since q2 “ 0, the only contribution
to those are given by Y P g´1 “ rg´1sbK. In particular, this is a fixed element,
and it vanishes at some point if and only if it vanishes everywhere. Moreover,
it has a non-zero component in every gα for α P ´Π, as required.

4 Proof of the Labourie conjecture in rank 2

In this section, we sketch Labourie’s proof of the conjecture in the case of rank
2 groups; actually, we will not really prove that Ψ is an homeomorphism, but
only that it is (surjective and) an immersion. This is the main step of the proof,
the conclusion follows by a general theorem in differential calculus, that we shall
omit. Remark that in rank 2 every Higgs bundle corresponding to a minimal
map (i.e. with vanishing quadratic differential) is automatically cyclic. Because
of this, the conjecture follows from:

Theorem 4.1. The restriction of Ψ to the subbundle of E having fiber over J
given by H0

`

Σ,Km``1
J

˘

is an immersion.

To prove this, we want to consider a family Jt of holomorphic structures
on Σ and qt of holomorphic differentials of degree m` ` 1; then, construct the
associated Higgs bundles pGt,Φtq as HJtp0, . . . , 0, qtq; finally, prove that if the
first order of these Higgs bundles vanishes, then also 9J0 and 9q0 vanish (where
we denote 9η0 “

Bηt
Bt

ˇ

ˇ

t“0
whenever this makes sense).

Remark 4.2. Thanks to Theorem 3.5, we get a family of cyclic maps ft : Σ̃ Ñ X
which are ρt-equivariant. Since the moduli spaces of representations and Higgs
bundles are homeomorphic, and since we are assuming that the first order of the
Higgs bundles vanish, also r 9ρ0s “ 0 (actually, here we are using the, much easier,
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isomorphism between the tangent spaces of the moduli spaces). Differentiating
in t the equation

ftpγx̃q “ ρtpγqftpx̃q,

(and choosing the adequate representatives of conjugacy classes) we obtain that
9f0pγx̃q “ ρ0pγq 9f0px̃q, that is, ξ “ ωp 9f0pγqq is a section of the adjoint bundle

Adpρ0q (that has fiber g). This will be crucial in computations, since dealing
with sections of vector bundles we can integrate by parts.

The Theorem is proved by showing that 9J0 “ 9q0 “ 0 and also ξ “ 0. We start
by some remarks toward the latter identity. According to the decomposition (7),
write

ξ “ ζ0 ` ζ1 ` ζ ` ζ
:.

Lemma 4.3. To show that ξ “ 0, it is enough to prove that Dξ “ 0, where D
is the flat connection on Adpρ0q.

Proof. This follows from the irreducibility of Hitchin representations (see [Lab06]):
Since ξ is Adpρ0q-equivariant, if Dξ “ 0 we would have a global section of the
local system Adpρ0q. Equivalently, this is a fixed element ξ P g commuting to
the whole of ρ0pπ1pΣqq. But the non-existence of such objects is exactly the
definiton of an irreducible representation.

We start by the following reduction:

Proposition 4.4. To prove Theorem 4.1, it suffices to prove that ξ “ ωpdf0pνqq,
for some vector field ν on Σ.

Proof. This is implicit in Labourie’s preprint. The first thing to notice is that
if ξ “ ωpdf0pνqq, then it is in particular self-adjoint: This is because, since
f˚ω0 “ f˚ω1 “ 0, ω ˝df “ Ψ0 “ Φ0`Φ˚0 , which takes values in the self-adjoint

part of X ˆ g. The first step is to prove 9J0 “ 0. To do that, recall that by the
proof of Theorem 3.5, the definition of Jt is:

ΨtpJtvq “ iΦtpvq ´ iΦtpvq
˚ “

`

iπZ ´ iπZ:
˘

Ψtpvq @v (real) vector field on Σ.

Consider these as objects on Σˆ p´1, 1q. Then we can pullback the connection
∇ “ D´adpωq introduced in (6) via ft to get a connection on the pull-back bun-
dle. Take the covariant derivative with respect to B

Bt , that has the fundamental
property of commuting with the projections to Z and Z::

D

Bt
ΨtpJtXq

ˇ

ˇ

ˇ

t“0
“
`

iπZ ´ iπZ:
˘D

Bt
ΨtpXq

ˇ

ˇ

ˇ

t“0
. (9)

The crucial fact here is that all these objects live in the pull-back of the bundle
rps. An elementary lemma in differential geometry (see [dC92] Chap. 3, Lemma
3.4 and Chap. 4, Lemma 4.1) allows us to exchange the differentiations with
respect to B

Bt and X (since these two vector fields clearly commute), paying the
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price of adding the torsion of ∇ in the game; using the torsion formula in (4),
one has

Ψ0p 9J0vq ` d∇
J0vpξq ´ πrms

“

ξ,Ψ0pJ0vq
‰

“
`

iπZ ´ iπZ:
˘

´

d∇
v pξq ´ πrms

“

µ,Ψ0pvq
‰

¯

.

Now since ξ “ Bft
Bt

ˇ

ˇ

t“0
is in dfpTΣq Ă rps, we can only consider the part of

this equation that takes values in rps; as both η ÞÑ πrmsη and η ÞÑ piπZ ´ iπZ:q
commute with the Cartan involution, we obtain:

d∇
J0Xξ `Ψ0p 9J0Xq “ id∇

Xζ ´ id
∇
Xpζ

:q.

Rearranging, we get
Ψ0 ˝ 9J0 “ 2iB̄ζ ´ 2iBζ:.

To prove 9J0 “ 0, it suffices to show that this vanishes as Ψ0 is injective (indeed,
for every simple root α already πα˝Ψ0 is an isomorphism by Definition 3.2). But
it is indeed the case that ζ is holomorphic: In local holomorphic coordinates, the
self-duality equation d∇Φ0 “ 0 together with the hypothesis ζ “ Φ0pνq imply
this easily:

D

Bz̄

`

Φ0pνq
˘

“
`

d∇Φ
˘

´

B

Bz̄
, ν
¯

´ d∇
ν Φ0

` B

Bz̄

˘

“ 0.

We now show that ξ “ 0, and 9q0 “ 0 will follow. Since ξ “ ξ˚, letting
ht : Σ̃ Ñ G{K be the compositions of ft with the projection, we also have
ξ “ βp Bht

Bt

ˇ

ˇ

t“0
q, where β is the Maurer-Cartan form of G{K. These maps are

harmonic, so we can differentiate the harmonic relation d∇`dht ˝ Jt
˘

“ 0 as
in [Spi14]. Using the same symmetry relations as above, together with the
expression for the curvature of ∇, for every tangent fields T,Z on Σ we get:

d∇
T d∇

J0Zξ ´ d∇
Z d∇

J0T ξ ´
”

Ψ0pT q, rΨ0pJ0Zq, ξs
ı

`

”

Ψ0pZq, rΨ0pT q, ξs
ı

“ ´d∇
T Ψ0

´

9J0Z
¯

` d∇
ZΨ0

´

9J0T
¯

.
(10)

Now 9J0 “ 0, hence taking Z “ J0T one obtains that the left hand side (which
is known as the “Jacobi operator” J pξq) vanishes. By [Spi14], Proposition 2.5,
(4), J pξq “ ´d˚dξ, where d˚ is the adjoint of ξ with respect to x¨, ¨y. Explicitly,
this means that for every Adpρq-equivariant η,

ż

Σ

xdξ,dηy dz ^ dz̄ “ 0;

then taking η “ ξ gives }dξ}2 “ 0, hence ξ “ 0 by Lemma 4.3.
It is easy to conclude that 9q0 “ 0: Essentially, qt “ trace

`

Φm`
t

˘

, and differ-
entiating this expression in t gives a linear expression in ξ, hence zero.

Remark 4.5. 1. It is tempting to differentiate the equation Φt “ Y `em`
bqt

to deduce directly that 9q0 “ 0, since Y and em`
are covariant constant.

However, 9Φ0 “ 0 only means that pGt,Φtq is constant (to the first order)
up to a gauge transformation, so more care would be needed to make this
idea work.
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2. The proof of the Proposition makes it clear that it is enough to prove that
ξ is self adjoint and that 9J0 “ 0. Actually, already knowing that ξ “ ξ˚

would give several advantages, and this can be made precise by proving
the following:

Corollary 4.6. We have ζ0 “ 0.

Proof. The main point is that ζ0 is self adjoint. Indeed, ζ0 P rhs by definition,
and ζ̄0 “ ζ0 (i.e. ζ0 P rg0s) since ξ P rg0s, and since the conjugation λ preserves
the decomposition (7). Hence, the projection to rks of ζ0 would be in rts, but
ζ0 “ ω0pξq lives in the orthogonal of rts.

By the above reasoning, we get directly that J pζ0q must equal the projection
to rg0s on the right hand side of (10). This, however, is obtained as covariant
derivatives of Ψ0, that takes values in rgZ‘gZ:s. We thus conclude by remarking
that J preserves the decomposition (7). This is not completely trivial, but
it can be deduced through straightforward computations using the different
expressions for J : Write, in local orthonormal coordinates, Φpzq “ νpzqdz.
Then, writing d∇

“ B∇ ` B̄∇, we get:

J pηq ´ 2B∇B̄∇pηq ´ 2B̄∇B∇pηq “ 2rrν, ηs, ν˚s ` 2rrν˚, ηs, νs

“ 4rrν, ηs, ν˚s ´ 2rrν, ν˚s, ηs

“ 4rrν˚, ηs, νs ` 2rrν, ν˚s, ηs.

The same proof would also give that ζ1 “ 0 if one knew that ζ1 is self-adjoint,
but I know of no direct proof of this fact.

4.1 How to prove that ξ “ dfpνq

One is thus reduced to prove that ξ “ df0pνq to complete the proof of Theorem
4.1. For this reason, from now on we always drop the 0 and write f “ f0 and
ρ “ ρ0. We use here that for a given simple root α, f˚ωα is an isomorphism
between TΣ and f˚rgαs, so that there exists a vector field ν on Σ such that

παpξq “ f˚ωαpνq.

Define: ξ̂ “ ξ´dfpνq. We want to prove that ξ̂ “ 0 or, equivalently, that dξ̂ “ 0

or J pξ̂q “ 0; to do so, we give a list of axioms that ξ satisfies and that turn out

to be satisfied by ξ̂, too.

Definition 4.7. The cyclic Pfaffian system is the set of differential forms on
Σ:

`

ωj
˘4

j“0
:“

`

f˚ω0, f
˚ω1, f

˚φ^ f˚φ, f˚φ˚ ´ f˚φ:, π̂0pf
˚φ^ f˚φ:q

˘

,

where π̂0 is the projection onto the orthogonal of rts in rhs. An infinitesimal
deformation of cyclic surfaces is a section η of rg0s (i.e. η̄ “ η) such that, for
every j “ 0, . . . , 4,

iηd∇
pωjq “ ´d∇`iηωjq (11)
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(here, iη is the contraction by η, i.e. if φ is a p-form, then iηφ is the pp ´ 1q
form given by iηφp¨q “ φpη, ¨q). It is called an infinitesimal deformation of closed
cyclic surfaces if, furthermore, it is Adpρq-equivariant.

Clearly, the relations ωj “ 0 are those that define f to be cyclic, together
with the condition of nowhere-vanishing of f˚ωα. The following is true:

Lemma 4.8. Both ξ and ξ̂ are infinitesimal deformations of cyclic surfaces.

Sketch of proof. Infinitesimal deformations of (closed) cyclic surfaces form a vec-
tor space, and since dfpνq is trivially one such, it is enough to prove the Lemma
for ξ. We already proved the “closed” part in Remark 4.2. To prove the rest,
Labourie first reduces to replacing pf˚rgs,∇q by a trivial vector bundle with its
flat connection; this is possible because the definition of an infinitesimal defor-
mation of cyclic surfaces is local, so it suffices to consider a parallel local frame.
Then, considering ft as a unique map Σˆ p´1, 1q Ñ X, the conclusion follows
from the Lie-Cartan formula and some computations.

In alternative, a less elegant but more straightforward method is to remark
via an explicit computation that for every f˚rgs-valued p-form α on Σˆp´1, 1q,

B

Bt
f˚t α

ˇ

ˇ

ˇ

t“0
“ f˚

´

iξd
∇α` d∇iξα

¯

,

and since the left hand side is 0 for every α “ ωj , the conclusion follows, as
well.

The advantage we have in dealing with ξ̂ instead of ξ directly is that for
at least one simple root α, ξ̂α “ 0. However, the proof of Corollary 4.6 does
not extend automatically: We have used the non-infinitesimal Theorem 3.5,
implying that cyclic maps project to harmonic maps in G{K. The infinitesimal
harmonic equation (for ξ self-adjoint) is J pξq “ 0, which, as we have seen,
implies ξ “ 0. Although he uses different notations, the first part of Labourie’s
proof is just a long set of computations proving explicitly that the definition
of an infinitesimal deformation of cyclic maps η implies J pη0q “ J pη1q “ 0
(he does not remark that J preserves the decomposition (7), so his notations
are somewhat more lengthy). I avoid rewriting his computations, that in every
situation may be re-done by hand using relations (11) and (4) to commute
operators. Jumping to conclusions, he gets:

J pξ̂0q “ 0 (Proposition 7.6.2) and J pξ̂1q “ 0 (Proposition 7.6.1).

It is left to prove that ζ̂ “ ξ̂Z and ζ̂: vanish. Here the above strategy should
fail, because, without knowing a priori that 9J0 “ 0, equation (10) would give

an a priori non-zero expression for J pζ̂ ` ζ̂:q. Here is where Labourie uses the

hypothesis ξ̂α “ 0. One also has to distinguish between the case SL3pRq and
the other ones, that turn out to be easier since one can exploit the relation

π1pζ̂ ^ φq “ 0. (12)
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Equation (12) follows from the relation on the infinitesimal deformation of cyclic
maps with respect to f˚ω1, that gives:

Bξ̂1 “ 2π1

`

pξ̂1 ` ζ̂q ^ φ
˘

(Proposition 7.4.2),

and we have already mentioned that ξ̂1 “ 0. This relation can be used, when
GC ‰ SL3pCq, to “propagate” ξ̂α “ 0 to all other simple roots: Indeed, if β is
another simple root such that α ` β “ γ is a root, then necessarily xγ P rg1s,
and actually the projection to rgγs of (12) gives:

ξ̂α ^ φβ ` ξ̂β ^ φα “ 0,

since γ may be written uniquely as sum of simple roots. As ξ̂α “ 0 and φα ‰ 0,
also ζβ “ 0, and since the Dynkin diagram is connected this procedure works

for all the simple roots. The same trick can be exploited to prove that ξ̂η “ 0,
since if η ´ α is a root, then xη´α P rg1s, as well.

We are only left to deal with G0 – SL3pRq. This is done in a more explicit
way, that we now only sketch. There are but three positive roots, α, β and
η, and we know that ξ̂α “ ξ̂´α “ 0 (since ξ̂ is real and λ exchanges rgαs and
rg´αs). Thus we can write, for example

ζ̂ “ µηxη ` µ´βx´β , φ: “ ψ´ηx´η ` ψαxα ` ψβxβ

(as φ˚ “ φ:, the coefficients of φ will just be the conjugates of the ψ’s). It is
clear that

rζ̂, φ:s “ ´µ´βψβrxβ , x´βs ` µηψ´ηrxη, x´ηs.

We have seen that rxη, x´ηs “ hη P tC, and in the same way as (12), one has in

this case π̂0pζ̂ ^ φ:q “ 0. As a consequence, since ψβ never vanishes, µ´β “ 0,

too. A similarly explicit analysis, this time using an expression for ∇ζ̂ ^ φ,
allows to deduce that ξ̂η “ 0, too.
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