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1. INTRODUCTION

Here is our plan for this article.

(1) In Section 2, we define the notion of harmonic maps and quadratic dif-
ferentials. Then we give a harmonic map proof of Teichmuller’s theorem
by Wolf. (See [2], [9])

(2) In Section 3, we explain a compactification of Teichmuller spaces by
Wolf using harmonic maps. (See [2], [4], [10], [11])

(3) In Section 4, we review the Morgan-Shalen compactification and the
Korevaar-Schoen limit. Then we give a generalization of Section 3 based
on the work of Daskalopoulos, Dostoglou, and Wentworth. (See [1], [2],

[7)

2. HARMONIC MAPS AND TEICHMULLER’S THEOREM

In this section, we briefly review Teichmuller’s theorem, which states that
the Teichmuller space of a compact Riemann surface of genus g > 1 is
homeomorphic to R6976. Our goal is to give a sketch of the harmonic map
proof by Wolf [10].

2.1. Harmonic maps and Hopf differentials. Let u: (X,0) — (Y,p) a
smooth map between Riemann surfaces of genus g > 1. Define an energy of
the map by

E(u):/ |du|*dvol.
X

The energy is conformally invariant, so the energy is well-defined on a Rie-
mann surface.

A map u is said to be harmonic if u is a critical point of the energy among
C1(X,Y), and Euler-Langrange equation for the energy, or harmonic map
equation, is given by

uzz + (log p)yu,uz = 0.
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Theorem 2.1. (Ezistence, Eells-Sampson [3])

Let M, N be a compact Riemannian manifolds and N has a monpositive
sectional curvature. Then given a continuous map f : M — N, there exists
a harmonic map homotopic to f.

Theorem 2.2. (Uniquness, Hartman [5])

Let M, N be a compact Riemannian manifolds and N has a nonpositive
sectional curvature. If fo and fi are homotopic harmonic maps such that
fi(x) is geodesic, then

(i) E(fo) = E(f1) = E(f1).

(73) the length of geodesic fi(x) is independent on .

If N has a negative sectional curvature, then f is unique in its homotopy
class or f maps onto a geodesic.

Let (S,0) be a compact Riemann surface. A quadratic differential is a
section of T*X 10 @ T* X0 and denote a set of all holomorphic sections by
QD(o).

Given a map u : (S,0) — (T,p), we associate a quadratic differential,
called Hopf differential, by

®, = (u*p)?°.

We note that @, is holomorphic if and only if w is harmonic.

2.2. Teichmuller’s theorem. The Teichmuller space T (S) is defined by a
collection of homeomorphisms {S i> X} up to biholomorphism connected
to the identity. Equivalently,

Thyp(S) = Metny,(S)/Diffo(5),

where Metp,,(S) is a set of all smooth metric with constant curvature
—1, Diffy(S) is diffeomorphisms isotopic to identity, and Diffy(S) acts on
Metpyp(S) by pullback.

We now give a proof of Teichumuller’s theorem using harmonic maps by

Wolf [10].
Theorem 2.3. Tpy,(S) is homeomorphic to R697C,

Sketch of the proof. We fix (S,0) € Tpyp(S) as a base point of Tpyp(S).
Given (S, p) € Thyp(S), there exists a unique harmonic map u, : (5,0) —
(S, p) by Theorem and Hopf(u,) is a holomorphic quadratic differential.
Now consider a map
H: Thyp(S) — QD(o)
p = Py,

where ®,,, = Hopf(u,). Wolf showed that # is a homeomorphism as follows:
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(1) Thyp(S) is 6g—6 dimensional manifold by considering a slice of the action
of Diffy(.5).

(2) QD(0) is a vector space and dimension is 6g — 6 by the Riemann-Roch

theorem.

‘H is well-defined by Hartman’s uniqueness theorem.

‘H is 1-1 by the Bochner formula.

‘H is smooth.

H is proper because of the properness of the energy F(u,), and the

estimate

(3)
(4)
()
(6)

a/|‘I>up|+b§E(up)§c/|‘I>up|+d.
S S

(7) H is a homeomorphism from the invariance of domain together with
the fact that H is a injective, proper map between same dimensional
manifolds.

O

3. COMPACTIFICATION OF TEICHMULLER SPACES

In previous section, we developed a parametrization of the Teichmuller
space by quadratic differentials. We use this fact to get a compactification
of the Teichmuller space by Wolf [10].

3.1. R-trees and measured foliations. An R-tree is a metric space with
a property that any two points are joined by a unique arc which is isometric
to an interval in R.

Ezample 3.1. (1) A simplicial tree, not necessarily locally finite, is an R-
tree.

(2) Define a metric on R? by d(p,q) = |p — q| if p and ¢ lies on the same
vertical line, and d(p, q) = d(p, pz) +d(pz, ¢z) +d(qz, q) otherwise, where
Pe, Qe are projections to x-axis. (R?,d) is an example of non-simplicial
R-tree.

A measured foliation (F,p) on a Riemann surface is a singular foliation
F with a transverse measure . Recall that a transverse measure is a map
from a smooth transverse arc to F to R > 0 which is invariant under leaf-
preserving isotopy, and locally induced by |dy| on R?. We denote the set of
measured foliation up to equivalence by M F(c), and PM F(o) for projective
version.

A quadratic differential ® defines a measured foliation in the following
way: In a natural coordinate away from zeros, ®({) = d¢?. Then the
local foliaitons ({Re( = const}, |dRe(|) patches together to give a measured
foliation known as a vertical foliation.
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We note the correspondence between measured foliations and quadratic
differentials:

Theorem 3.2. (Hubbard-Masur [6]])

Given a measured foliation (F,pu) on a compact Riemann surface S of
genus > 1, there exists a unique quadratic differential ® on S such that a
vertical foliation of ® is equivalent to (F, ).

3.2. Thurston and Wolf’s compactification.

Theorem 3.3. (Thurston)
MF (o) is homeomorphic to a 6g — 6 dimensional ball and PMF (o) is
homeomorphic to a 6g — 7 dimensional sphere.

Thurston gave a compactification T'Th by gluing the projective measured
foliation to 7. Thurston’s compactification does not depend on a base point

and the action of I' extends to T'Th continuously. FExplicitly, Thurston’s
compactification is defined as follows:

T™ = T(S)UPMF = nol(T) Uno I(MF) C P(RS)

for a generating set C, a properly defined embedding wol : 7 — P(Rg) and
mol: MF(c)— P(RY), and the induced topology from P(RY).

We now explain the compactification of the Teichmuller space using har-
monic maps by Wolf. Let 7 (o) be the Teichmuller space of (S,0), and
QD(o) a set of holomorphic quadratic differentials on a Riemann surface
(S,0). Define a norm of ® € QD(o) by

|®| = /S |®(2)|dvols.

Let

BQD, = {® € QD(0) : | ] < 1},

SQD, ={® € QD(0) : @] =1},

BQD, = BOD, USQD,.
Then consider a map
H:T(0) = BQD,
AH(p)

1+ 4[[H(p)||
Since H is a homeomorphism onto its image BQD,, we identify 7 (o) with

p

w
BQD,, and define a compactification 7 (o) by a compactification on its
image:

T(0)" = T(o)USQD, = BQD,.
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Theorem 3.4. (Wolf [10])

= ——W , —W =
7" and T (o) are homeomorphic. Furthermore, T (o) = T does not
depend on a choice of base point o, and I'-action on T extends continuously

to 7W.

4. COMPACTIFICATION OF SL(2,C) CHARACTER VARIETIES

In this section, we generalize the result of previous section to the case of
SL(2,C)-character varieties by Daskalopoulos, Dostoglou, and Wentworth

.

4.1. The Morgan-Shalen compactification. Let I' be a finitely gener-
ated group and x(I') = Hom(I",SL(2,C))/SL(2,C). Let C be a conjugacy
classes of I' and P(C) = P(RY). Define

i:x(I) —PCO)

by i(p)(y) = log(|Trp(7)| +2). Then the Morgan-Shalen compactification is
defined by the closure of the image of ¢ in P(C'). Morgan and Shalen proved
that x(T") is compact and boundary points are projective length functions of
I" on an R-tree T. We can restate as follows:

Theorem 4.1. If p; € x(I') is unbounded, then there exist constants A\, —
oo such that the rescaled length functions ilpk converges to l, for p: T' —
Isom(T) for an R-tree T'.

4.2. The Korevaar-Schoen limit. Let (2 be a set and f: Q2 — N be a
map to a simply connected NPC space (IV,dy). We enlarge a domain to get
some convexity as follows.

QO = Qa
Qk+1 = Qk X Qk X [0, 1],
Qoo = ZO:O Qk/ ™~

where ~ is given by Qf — Qri1,  — (z,2,0).
fr : Qr = N extends to fry1: Qx11 — N by linear extension:
Sy, A) = (L= N fu(@) + Afe(y)-
We have a induced map f : o0 — N and a pullback metric doo = fi dn.
Define
(Z,dz) := (Qoo/doos doo)-
Then Z is an NPC space and isometric to the closed convex hull C(f(€2)).

Now consider a sequence of maps fi : Q — (Ng,dy). We say fi converges
to f: Q — (Nwo,dso) in the pullback sense, or the Korevaar-Schoen sense, if

(i) di,oo converges locally uniformly to du.
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(i) f: Q5 Qo L (Qoo/doo, doo) and Nag := Qoo /dos.
The following proposition and theorem are properties and conditions for
a convergence in the Korevaar-Schoen sense [7].

Proposition 4.2. The pullback convergence has the following property.
(1) If Ny, are NPC, then so is Noo.
(ii) If fr are energy minimizer, then so is f.

(i) If fr are I'-equivariant, then so is f.

Theorem 4.3. If fi, : X — (N, d) has a uniform modulus of continuity:

di.(fr(2), fr(y)) < C(x)dx (,y),

then fr converges in the Korevaar-Schoen sense to f: X — No.

4.3. The Daskalopoulos-Dostoglou-Wentworth compactification.

Theorem 4.4. (Daskalopoulos, Dostoglou, and Wentworth [1)])

Let X be a compact Riemann surface with genus > 1. Given an unbounded
sequence of irreducible SL(2, C)-representations py, corresponding harmonic
maps uy : X - H3 converges to U« in the Korevaar-Schoen sense after
rescaling, where us : X — T for an R-tree T.

Sketch of the proof of Theorem[{.4]. Given a sequence of irreducible SL(2, C)-
representations py : m(X) — SL(2,C), the Donaldson-Corlette theorem
provides corresponding harmonic maps u : X — H® (SL(2,C)/SU(2) =
H?3). Harmonic maps uy, satisfies the following estimate (see [9])

sup |dug|(y) < Clz, R)[E(uy)]2.
yEBRr(x)

If we rescale the metrics dys by Ay = E (uk)% and denote the rescaled

maps by a1 X — (H3, A—ldes), then
sup |dig|(y) < C(z, R).
yEBR(2)
Therefore, by Theorem iy converges in the Korevaar-Schoen sense to
w: X = Neo,

where Ny = Qoo/doo is the Korevaar-Schoen limit. Then N is indeed
an R-tree because (H?, led%l) is %—hyperbolic7 S0 N is 0-hyperbolic NPC
space, which is an R-tree. O

Recall that given an action of I' on H? by p : I' — I'som(H3), the length
function I, : I' = R > 0 is defined by

lp(y) = inf dys(z,p(7)z)
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for v € I'. Similarly, given a I'-equivariant map u : X — H?3, we define the
length function of u by

() = i dg (oo (@), oo (7).

Theorem 4.5. (Daskalopoulos-Dostoglou- Wentworth [1I])
The length function l,, of the action of I' on T is in the same projective
class of the Morgan-Shalen limit of py. Faplicitly, for v € T,

1 1
Lu() = lim PV (v) = lim o (v) = 1p(7).
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