HARMONIC MAPS TO R-TREES AND MORGAN-SHALEN COMPACTIFICATION

SEMIN KIM

1. INTRODUCTION

Here is our plan for this article.

- (1) In Section 2, we define the notion of harmonic maps and quadratic differentials. Then we give a harmonic map proof of Teichmuller's theorem by Wolf. (See [2], [9])
- (2) In Section 3, we explain a compactification of Teichmuller spaces by Wolf using harmonic maps. (See [2], [4], [10], [11])
- (3) In Section 4, we review the Morgan-Shalen compactification and the Korevaar-Schoen limit. Then we give a generalization of Section 3 based on the work of Daskalopoulos, Dostoglou, and Wentworth. (See [1], [2], [7])

2. HARMONIC MAPS AND TEICHMULLER'S THEOREM

In this section, we briefly review Teichmuller's theorem, which states that the Teichmuller space of a compact Riemann surface of genus g > 1 is homeomorphic to \mathbb{R}^{6g-6} . Our goal is to give a sketch of the harmonic map proof by Wolf [10].

2.1. Harmonic maps and Hopf differentials. Let $u: (X, \sigma) \to (Y, \rho)$ a smooth map between Riemann surfaces of genus g > 1. Define an energy of the map by

$$E(u) = \int_X |du|^2 dvol.$$

The energy is conformally invariant, so the energy is well-defined on a Riemann surface.

A map u is said to be *harmonic* if u is a critical point of the energy among $C^1(X, Y)$, and Euler-Langrange equation for the energy, or harmonic map equation, is given by

$$u_{z\bar{z}} + (\log\rho)_u u_z u_{\bar{z}} = 0.$$

Date: Dec 30, 2014.

Theorem 2.1. (Existence, Eells-Sampson [3])

Let M, N be a compact Riemannian manifolds and N has a nonpositive sectional curvature. Then given a continuous map $f: M \to N$, there exists a harmonic map homotopic to f.

Theorem 2.2. (Uniqueess, Hartman [5])

Let M, N be a compact Riemannian manifolds and N has a nonpositive sectional curvature. If f_0 and f_1 are homotopic harmonic maps such that $f_t(x)$ is geodesic, then

- (i) $E(f_0) = E(f_1) = E(f_t)$.
- (ii) the length of geodesic $f_t(x)$ is independent on x.

If N has a negative sectional curvature, then f is unique in its homotopy class or f maps onto a geodesic.

Let (S, σ) be a compact Riemann surface. A quadratic differential is a section of $T^*X^{1,0} \otimes T^*X^{1,0}$ and denote a set of all holomorphic sections by $QD(\sigma)$.

Given a map $u : (S, \sigma) \to (T, \rho)$, we associate a quadratic differential, called *Hopf differential*, by

$$\Phi_u := (u^* \rho)^{2,0}$$

We note that Φ_u is holomorphic if and only if u is harmonic.

2.2. Teichmuller's theorem. The *Teichmuller space* $\mathcal{T}(S)$ is defined by a collection of homeomorphisms $\{S \xrightarrow{f} X\}$ up to biholomorphism connected to the identity. Equivalently,

$$\mathcal{T}_{hyp}(S) = \operatorname{Met}_{hyp}(S) / \operatorname{Diff}_0(S),$$

where $\operatorname{Met}_{hyp}(S)$ is a set of all smooth metric with constant curvature -1, $\operatorname{Diff}_0(S)$ is diffeomorphisms isotopic to identity, and $\operatorname{Diff}_0(S)$ acts on $\operatorname{Met}_{hyp}(S)$ by pullback.

We now give a proof of Teichumuller's theorem using harmonic maps by Wolf [10].

Theorem 2.3. $\mathcal{T}_{hup}(S)$ is homeomorphic to \mathbb{R}^{6g-6} .

Sketch of the proof. We fix $(S, \sigma) \in \mathcal{T}_{hyp}(S)$ as a base point of $\mathcal{T}_{hyp}(S)$. Given $(S, \rho) \in \mathcal{T}_{hyp}(S)$, there exists a unique harmonic map $u_{\rho} : (S, \sigma) \to (S, \rho)$ by Theorem 2.1 and $Hopf(u_{\rho})$ is a holomorphic quadratic differential. Now consider a map

$$\begin{aligned} \mathcal{H}: \quad \mathcal{T}_{hyp}(S) &\to QD(\sigma) \\ \rho &\mapsto \Phi_{u_{\rho}} \end{aligned}$$

where $\Phi_{u_{\rho}} = Hopf(u_{\rho})$. Wolf showed that \mathcal{H} is a homeomorphism as follows:

HARMONIC MAPS TO R-TREES AND MORGAN-SHALEN COMPACTIFICATION 3

- (1) $\mathcal{T}_{hyp}(S)$ is 6g-6 dimensional manifold by considering a slice of the action of $\text{Diff}_0(S)$.
- (2) $QD(\sigma)$ is a vector space and dimension is 6g 6 by the Riemann-Roch theorem.
- (3) \mathcal{H} is well-defined by Hartman's uniqueness theorem.
- (4) \mathcal{H} is 1-1 by the Bochner formula.
- (5) \mathcal{H} is smooth.
- (6) \mathcal{H} is proper because of the properness of the energy $E(u_{\rho})$, and the estimate

$$a\int_{S} |\Phi_{u_{\rho}}| + b \le E(u_{\rho}) \le c\int_{S} |\Phi_{u_{\rho}}| + d.$$

(7) \mathcal{H} is a homeomorphism from the invariance of domain together with the fact that \mathcal{H} is a injective, proper map between same dimensional manifolds.

3. Compactification of Teichmuller spaces

In previous section, we developed a parametrization of the Teichmuller space by quadratic differentials. We use this fact to get a compactification of the Teichmuller space by Wolf [10].

3.1. \mathbb{R} -trees and measured foliations. An \mathbb{R} -tree is a metric space with a property that any two points are joined by a unique arc which is isometric to an interval in \mathbb{R} .

- Example 3.1. (1) A simplicial tree, not necessarily locally finite, is an \mathbb{R} -tree.
- (2) Define a metric on \mathbb{R}^2 by d(p,q) = |p-q| if p and q lies on the same vertical line, and $d(p,q) = d(p,p_x) + d(p_x,q_x) + d(q_x,q)$ otherwise, where p_x, q_x are projections to x-axis. (\mathbb{R}^2, d) is an example of non-simplicial \mathbb{R} -tree.

A measured foliation (F, μ) on a Riemann surface is a singular foliation F with a transverse measure μ . Recall that a transverse measure is a map from a smooth transverse arc to F to $\mathbb{R} \geq 0$ which is invariant under leafpreserving isotopy, and locally induced by |dy| on \mathbb{R}^2 . We denote the set of measured foliation up to equivalence by $MF(\sigma)$, and $PMF(\sigma)$ for projective version.

A quadratic differential Φ defines a measured foliation in the following way: In a natural coordinate away from zeros, $\Phi(\zeta) = d\zeta^2$. Then the local foliaitons ({Re $\zeta = const$ }, $|d\text{Re}\zeta|$) patches together to give a measured foliation known as *a vertical foliation*.

SEMIN KIM

We note the correspondence between measured foliations and quadratic differentials:

Theorem 3.2. (Hubbard-Masur [6])

Given a measured foliation (F, μ) on a compact Riemann surface S of genus > 1, there exists a unique quadratic differential Φ on S such that a vertical foliation of Φ is equivalent to (F, μ) .

3.2. Thurston and Wolf's compactification.

Theorem 3.3. (Thurston)

 $MF(\sigma)$ is homeomorphic to a 6g - 6 dimensional ball and $PMF(\sigma)$ is homeomorphic to a 6g - 7 dimensional sphere.

Thurston gave a compactification $\overline{\mathcal{T}}^{Th}$ by gluing the projective measured foliation to \mathcal{T} . Thurston's compactification does not depend on a base point and the action of Γ extends to $\overline{\mathcal{T}}^{Th}$ continuously. Explicitly, Thurston's compactification is defined as follows:

$$\overline{\mathcal{T}}^{Th} = \mathcal{T}(S) \cup PMF = \pi \circ l(\mathcal{T}) \cup \pi \circ I(MF) \subset \mathbb{P}(\mathbb{R}^C_+)$$

for a generating set C, a properly defined embedding $\pi \circ l : \mathcal{T} \to \mathbb{P}(\mathbb{R}^{C}_{+})$ and $\pi \circ I : MF(\sigma) \to \mathbb{P}(\mathbb{R}^{C}_{+})$, and the induced topology from $\mathbb{P}(\mathbb{R}^{C}_{+})$.

We now explain the compactification of the Teichmuller space using harmonic maps by Wolf. Let $\mathcal{T}(\sigma)$ be the Teichmuller space of (S, σ) , and $QD(\sigma)$ a set of holomorphic quadratic differentials on a Riemann surface (S, σ) . Define a norm of $\Phi \in QD(\sigma)$ by

$$|\Phi|| = \int_{S} |\Phi(z)| dvol_{S}.$$

Let

$$BQD_{\sigma} = \{ \Phi \in QD(\sigma) : \|\Phi\| < 1 \},\$$

$$SQD_{\sigma} = \{ \Phi \in QD(\sigma) : \|\Phi\| = 1 \},\$$

$$\overline{BQD_{\sigma}} = BQD_{\sigma} \cup SQD_{\sigma}.$$

Then consider a map

$$\mathcal{H}: \mathcal{T}(\sigma) \to BQD_{\sigma}$$
$$\rho \mapsto \frac{4\mathcal{H}(\rho)}{1+4\|\mathcal{H}(\rho)\|}.$$

Since $\overline{\mathcal{H}}$ is a homeomorphism onto its image BQD_{σ} , we identify $\mathcal{T}(\sigma)$ with BQD_{σ} , and define a compactification $\overline{\mathcal{T}(\sigma)}^W$ by a compactification on its image:

$$\overline{\mathcal{T}(\sigma)}^W = \mathcal{T}(\sigma) \cup SQD_\sigma = \overline{BQD_\sigma}.$$

Theorem 3.4. (Wolf [10]) $\overline{\mathcal{T}}^{Th}$ and $\overline{\mathcal{T}(\sigma)}^{W}$ are homeomorphic. Furthermore, $\overline{\mathcal{T}(\sigma)}^{W} = \overline{\mathcal{T}}^{W}$ does not depend on a choice of base point σ , and Γ -action on \mathcal{T} extends continuously to $\overline{\mathcal{T}}^W$.

4. Compactification of $SL(2,\mathbb{C})$ character varieties

In this section, we generalize the result of previous section to the case of $SL(2,\mathbb{C})$ -character varieties by Daskalopoulos, Dostoglou, and Wentworth [1].

4.1. The Morgan-Shalen compactification. Let Γ be a finitely generated group and $\chi(\Gamma) = Hom(\Gamma, SL(2,\mathbb{C}))//SL(2,\mathbb{C})$. Let C be a conjugacy classes of Γ and $\mathbb{P}(C) = \mathbb{P}(\mathbb{R}^C)$. Define

$$i: \chi(\Gamma) \to \mathbb{P}(C)$$

by $i(\rho)(\gamma) = \log(|\text{Tr}\rho(\gamma)| + 2)$. Then the Morgan-Shalen compactification is defined by the closure of the image of i in $\mathbb{P}(C)$. Morgan and Shalen proved that $\chi(\Gamma)$ is compact and boundary points are projective length functions of Γ on an \mathbb{R} -tree T. We can restate as follows:

Theorem 4.1. If $\rho_k \in \chi(\Gamma)$ is unbounded, then there exist constants $\lambda_k \to$ ∞ such that the rescaled length functions $\frac{1}{\lambda_k} l_{\rho_k}$ converges to l_{ρ} for $\rho: \overset{\sim}{\Gamma} \to \overset{\sim}{\Gamma}$ Isom(T) for an \mathbb{R} -tree T.

4.2. The Korevaar-Schoen limit. Let Ω be a set and $f: \Omega \to N$ be a map to a simply connected NPC space (N, d_N) . We enlarge a domain to get some convexity as follows.

$$\begin{array}{rcl} \Omega_0 &=& \Omega, \\ \Omega_{k+1} &=& \Omega_k \times \Omega_k \times [0,1], \\ \Omega_\infty &=& \bigsqcup_{k=0}^\infty \Omega_k / \sim, \end{array}$$

where \sim is given by $\Omega_k \hookrightarrow \Omega_{k+1}, x \mapsto (x, x, 0).$

 $f_k: \Omega_k \to N$ extends to $f_{k+1}: \Omega_{k+1} \to N$ by linear extension:

$$f_{k+1}(x, y, \lambda) = (1 - \lambda)f_k(x) + \lambda f_k(y).$$

We have a induced map $f_{\infty} : \Omega_{\infty} \to N$ and a pullback metric $d_{\infty} = f_{\infty}^* d_N$. Define

$$(Z, d_Z) := (\Omega_{\infty}/d_{\infty}, d_{\infty})$$

Then Z is an NPC space and isometric to the closed convex hull $C(f(\Omega))$.

Now consider a sequence of maps $f_k : \Omega \to (N_k, d_k)$. We say f_k converges to $f: \Omega \to (N_{\infty}, d_{\infty})$ in the pullback sense, or the Korevaar-Schoen sense, if

(i) $d_{k,\infty}$ converges locally uniformly to d_{∞} .

(*ii*) $f: \Omega \xrightarrow{i} \Omega_{\infty} \xrightarrow{q} (\overline{\Omega_{\infty}/d_{\infty}}, d_{\infty})$ and $N_{\infty} := \overline{\Omega_{\infty}/d_{\infty}}$.

The following proposition and theorem are properties and conditions for a convergence in the Korevaar-Schoen sense [7].

Proposition 4.2. The pullback convergence has the following property.

- (i) If N_k are NPC, then so is N_{∞} .
- (ii) If f_k are energy minimizer, then so is f.
- (iii) If f_k are Γ -equivariant, then so is f.

Theorem 4.3. If $f_k : X \to (N_k, d_k)$ has a uniform modulus of continuity: $d_k(f_k(x), f_k(y)) < C(x)d_X(x, y),$

then f_k converges in the Korevaar-Schoen sense to $f: X \to N_{\infty}$.

4.3. The Daskalopoulos-Dostoglou-Wentworth compactification.

Theorem 4.4. (Daskalopoulos, Dostoglou, and Wentworth [1])

Let X be a compact Riemann surface with genus > 1. Given an unbounded sequence of irreducible $SL(2, \mathbb{C})$ -representations ρ_k , corresponding harmonic maps $u_k : \tilde{X} \to \mathbb{H}^3$ converges to u_∞ in the Korevaar-Schoen sense after rescaling, where $u_\infty : \tilde{X} \to T$ for an \mathbb{R} -tree T.

Sketch of the proof of Theorem 4.4. Given a sequence of irreducible $SL(2, \mathbb{C})$ representations $\rho_k : \pi_1(X) \to SL(2, \mathbb{C})$, the Donaldson-Corlette theorem
provides corresponding harmonic maps $u_k : \tilde{X} \to \mathbb{H}^3$ $(SL(2, \mathbb{C})/SU(2) \cong \mathbb{H}^3)$. Harmonic maps u_k satisfies the following estimate (see [9])

$$\sup_{y \in B_R(x)} |du_k|(y) \le C(x, R) [E(u_k)]^{\frac{1}{2}}.$$

If we rescale the metrics $d_{\mathbb{H}^3}$ by $\lambda_k = E(u_k)^{\frac{1}{2}}$ and denote the rescaled maps by $\hat{u}_k : \tilde{X} \to (\mathbb{H}^3, \frac{1}{\lambda_k} d_{\mathbb{H}^3})$, then

$$\sup_{y \in B_R(x)} |d\hat{u}_k|(y) \le C(x, R).$$

Therefore, by Theorem 4.3 \hat{u}_k converges in the Korevaar-Schoen sense to

$$u: X \to N_{\infty},$$

where $N_{\infty} = \overline{\Omega_{\infty}/d_{\infty}}$ is the Korevaar-Schoen limit. Then N_{∞} is indeed an \mathbb{R} -tree because $(\mathbb{H}^3, \frac{1}{\lambda_k} d^3_{\mathbb{H}})$ is $\frac{\delta}{\lambda_k}$ -hyperbolic, so N_{∞} is 0-hyperbolic NPC space, which is an \mathbb{R} -tree.

Recall that given an action of Γ on \mathbb{H}^3 by $\rho: \Gamma \to Isom(\mathbb{H}^3)$, the length function $l_{\rho}: \Gamma \to \mathbb{R} \ge 0$ is defined by

$$l_{\rho}(\gamma) = \inf_{x \in \mathbb{H}^3} d_{\mathbb{H}^3}(x, \rho(\gamma)x)$$

 $\mathbf{6}$

for $\gamma \in \Gamma$. Similarly, given a Γ -equivariant map $u : \tilde{X} \to \mathbb{H}^3$, we define the length function of u by

$$l_u(\gamma) = \inf_{x \in \tilde{X}_{\infty}} d_{\mathbb{H}^3}(u_{\infty}(x), u_{\infty}(\gamma x)).$$

Theorem 4.5. (Daskalopoulos-Dostoglou-Wentworth [1])

The length function l_u of the action of Γ on T is in the same projective class of the Morgan-Shalen limit of ρ_k . Explicitly, for $\gamma \in \Gamma$,

$$l_u(\gamma) = \lim_k \frac{1}{\lambda_k} l_{\hat{u}_k}(\gamma) = \lim_k \frac{1}{\lambda_k} l_{\rho_k}(\gamma) = l_{\rho}(\gamma).$$

References

- [1] G. Daskalopoulos, S. Dostoglou, and R. Wentworth. Character varieties and harmonic maps to **R**-trees. *Math. Res. Lett.*, 5(4):523–533, 1998.
- [2] G. Daskalopoulos and R. Wentworth. Harmonic maps and teichmüller theory. Handbook of Teichmüller theory, 1:33–109, 2007.
- [3] J. Eells and J. H. Sampson. Harmonic mappings of riemannian manifolds. American Journal of Mathematics, pages 109–160, 1964.
- [4] B. Farb and D. Margalit. A primer on mapping class groups, volume 49. Princeton University Press, 2012.
- [5] P. Hartman. On homotopic harmonic maps. Canadian Journal of Mathematics, 19(4):673, 1967.
- [6] J. Hubbard and H. Masur. Quadratic differentials and foliations. Acta Mathematica, 142(1):221–274, 1979.
- [7] N. Korevaar and R. Schoen. Global existence theorems for harmonic maps to non-locally compact spaces. *Comm. Anal. Geom*, 5:333–388, 1997.
- [8] J. W. Morgan and P. B. Shalen. Valuations, trees, and degenerations of hyperbolic structures, i. Annals of Mathematics, pages 401–476, 1984.
- [9] R. Schoen and S.-T. Yau. Lectures on harmonic maps. International Press Cambridge, 1997.
- [10] M. Wolf. The teichmüller theory of harmonic maps. Journal of differential geometry, 29(2):449–479, 1989.
- [11] M. Wolf. On realizing measured foliations via quadratic differentials of harmonic maps tor-trees. *Journal DAnalyse Mathematique*, 68(1):107– 120, 1996.