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1. Introduction

Here is our plan for this article.

(1) In Section 2, we define the notion of harmonic maps and quadratic dif-
ferentials. Then we give a harmonic map proof of Teichmuller’s theorem
by Wolf. (See [2], [9])

(2) In Section 3, we explain a compactification of Teichmuller spaces by
Wolf using harmonic maps. (See [2], [4], [10], [11])

(3) In Section 4, we review the Morgan-Shalen compactification and the
Korevaar-Schoen limit. Then we give a generalization of Section 3 based
on the work of Daskalopoulos, Dostoglou, and Wentworth. (See [1], [2],
[7])

2. Harmonic maps and Teichmuller’s theorem

In this section, we briefly review Teichmuller’s theorem, which states that
the Teichmuller space of a compact Riemann surface of genus g > 1 is
homeomorphic to R6g−6. Our goal is to give a sketch of the harmonic map
proof by Wolf [10].

2.1. Harmonic maps and Hopf differentials. Let u : (X,σ)→ (Y, ρ) a
smooth map between Riemann surfaces of genus g > 1. Define an energy of
the map by

E(u) =

∫
X
|du|2dvol.

The energy is conformally invariant, so the energy is well-defined on a Rie-
mann surface.

A map u is said to be harmonic if u is a critical point of the energy among
C1(X,Y ), and Euler-Langrange equation for the energy, or harmonic map
equation, is given by

uzz̄ + (log ρ)uuzuz̄ = 0.

Date: Dec 30, 2014.

1



2 SEMIN KIM

Theorem 2.1. (Existence, Eells-Sampson [3])
Let M, N be a compact Riemannian manifolds and N has a nonpositive

sectional curvature. Then given a continuous map f : M → N , there exists
a harmonic map homotopic to f.

Theorem 2.2. (Uniquness, Hartman [5])
Let M, N be a compact Riemannian manifolds and N has a nonpositive

sectional curvature. If f0 and f1 are homotopic harmonic maps such that
ft(x) is geodesic, then

(i) E(f0) = E(f1) = E(ft).
(ii) the length of geodesic ft(x) is independent on x.

If N has a negative sectional curvature, then f is unique in its homotopy
class or f maps onto a geodesic.

Let (S, σ) be a compact Riemann surface. A quadratic differential is a
section of T ∗X1,0 ⊗ T ∗X1,0 and denote a set of all holomorphic sections by
QD(σ).

Given a map u : (S, σ) → (T, ρ), we associate a quadratic differential,
called Hopf differential, by

Φu := (u∗ρ)2,0.

We note that Φu is holomorphic if and only if u is harmonic.

2.2. Teichmuller’s theorem. The Teichmuller space T (S) is defined by a

collection of homeomorphisms {S f−→ X} up to biholomorphism connected
to the identity. Equivalently,

Thyp(S) = Methyp(S)/Diff0(S),

where Methyp(S) is a set of all smooth metric with constant curvature
−1, Diff0(S) is diffeomorphisms isotopic to identity, and Diff0(S) acts on
Methyp(S) by pullback.

We now give a proof of Teichumuller’s theorem using harmonic maps by
Wolf [10].

Theorem 2.3. Thyp(S) is homeomorphic to R6g−6.

Sketch of the proof. We fix (S, σ) ∈ Thyp(S) as a base point of Thyp(S).
Given (S, ρ) ∈ Thyp(S), there exists a unique harmonic map uρ : (S, σ) →
(S, ρ) by Theorem 2.1 and Hopf(uρ) is a holomorphic quadratic differential.
Now consider a map

H : Thyp(S) → QD(σ)

ρ 7→ Φuρ

where Φuρ = Hopf(uρ). Wolf showed thatH is a homeomorphism as follows:
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(1) Thyp(S) is 6g−6 dimensional manifold by considering a slice of the action
of Diff0(S).

(2) QD(σ) is a vector space and dimension is 6g − 6 by the Riemann-Roch
theorem.

(3) H is well-defined by Hartman’s uniqueness theorem.
(4) H is 1-1 by the Bochner formula.
(5) H is smooth.
(6) H is proper because of the properness of the energy E(uρ), and the

estimate

a

∫
S
|Φuρ |+ b ≤ E(uρ) ≤ c

∫
S
|Φuρ |+ d.

(7) H is a homeomorphism from the invariance of domain together with
the fact that H is a injective, proper map between same dimensional
manifolds.

�

3. Compactification of Teichmuller spaces

In previous section, we developed a parametrization of the Teichmuller
space by quadratic differentials. We use this fact to get a compactification
of the Teichmuller space by Wolf [10].

3.1. R-trees and measured foliations. An R-tree is a metric space with
a property that any two points are joined by a unique arc which is isometric
to an interval in R.

Example 3.1. (1) A simplicial tree, not necessarily locally finite, is an R-
tree.

(2) Define a metric on R2 by d(p, q) = |p − q| if p and q lies on the same
vertical line, and d(p, q) = d(p, px)+d(px, qx)+d(qx, q) otherwise, where
px, qx are projections to x-axis. (R2, d) is an example of non-simplicial
R-tree.

A measured foliation (F, µ) on a Riemann surface is a singular foliation
F with a transverse measure µ. Recall that a transverse measure is a map
from a smooth transverse arc to F to R ≥ 0 which is invariant under leaf-
preserving isotopy, and locally induced by |dy| on R2. We denote the set of
measured foliation up to equivalence by MF (σ), and PMF (σ) for projective
version.

A quadratic differential Φ defines a measured foliation in the following
way: In a natural coordinate away from zeros, Φ(ζ) = dζ2. Then the
local foliaitons ({Reζ = const}, |dReζ|) patches together to give a measured
foliation known as a vertical foliation.
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We note the correspondence between measured foliations and quadratic
differentials:

Theorem 3.2. (Hubbard-Masur [6])
Given a measured foliation (F, µ) on a compact Riemann surface S of

genus > 1, there exists a unique quadratic differential Φ on S such that a
vertical foliation of Φ is equivalent to (F, µ).

3.2. Thurston and Wolf’s compactification.

Theorem 3.3. (Thurston)
MF (σ) is homeomorphic to a 6g − 6 dimensional ball and PMF (σ) is

homeomorphic to a 6g − 7 dimensional sphere.

Thurston gave a compactification T Th by gluing the projective measured
foliation to T . Thurston’s compactification does not depend on a base point

and the action of Γ extends to T Th continuously. Explicitly, Thurston’s
compactification is defined as follows:

T Th = T (S) ∪ PMF = π ◦ l(T ) ∪ π ◦ I(MF ) ⊂ P(RC+)

for a generating set C, a properly defined embedding π ◦ l : T → P(RC+) and

π ◦ I : MF (σ)→ P(RC+), and the induced topology from P(RC+).

We now explain the compactification of the Teichmuller space using har-
monic maps by Wolf. Let T (σ) be the Teichmuller space of (S, σ), and
QD(σ) a set of holomorphic quadratic differentials on a Riemann surface
(S, σ). Define a norm of Φ ∈ QD(σ) by

‖Φ‖ =

∫
S
|Φ(z)|dvolS .

Let

BQDσ = {Φ ∈ QD(σ) : ‖Φ‖ < 1},
SQDσ = {Φ ∈ QD(σ) : ‖Φ‖ = 1},

BQDσ = BQDσ ∪ SQDσ.

Then consider a map

H̄ : T (σ)→ BQDσ

ρ 7→ 4H(ρ)

1 + 4‖H(ρ)‖
.

Since H̄ is a homeomorphism onto its image BQDσ, we identify T (σ) with

BQDσ, and define a compactification T (σ)
W

by a compactification on its
image:

T (σ)
W

= T (σ) ∪ SQDσ = BQDσ.
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Theorem 3.4. (Wolf [10])

T Th and T (σ)
W

are homeomorphic. Furthermore, T (σ)
W

= T W does not
depend on a choice of base point σ, and Γ-action on T extends continuously

to T W .

4. Compactification of SL(2,C) character varieties

In this section, we generalize the result of previous section to the case of
SL(2,C)-character varieties by Daskalopoulos, Dostoglou, and Wentworth
[1].

4.1. The Morgan-Shalen compactification. Let Γ be a finitely gener-
ated group and χ(Γ) = Hom(Γ, SL(2,C))//SL(2,C). Let C be a conjugacy
classes of Γ and P(C) = P(RC). Define

i : χ(Γ)→ P(C)

by i(ρ)(γ) = log(|Trρ(γ)|+ 2). Then the Morgan-Shalen compactification is
defined by the closure of the image of i in P(C). Morgan and Shalen proved

that χ(Γ) is compact and boundary points are projective length functions of
Γ on an R-tree T . We can restate as follows:

Theorem 4.1. If ρk ∈ χ(Γ) is unbounded, then there exist constants λk →
∞ such that the rescaled length functions 1

λk
lρk converges to lρ for ρ : Γ →

Isom(T ) for an R-tree T .

4.2. The Korevaar-Schoen limit. Let Ω be a set and f : Ω → N be a
map to a simply connected NPC space (N, dN ). We enlarge a domain to get
some convexity as follows.

Ω0 = Ω,
Ωk+1 = Ωk × Ωk × [0, 1],

Ω∞ =
⊔∞
k=0 Ωk/ ∼,

where ∼ is given by Ωk ↪→ Ωk+1, x 7→ (x, x, 0).
fk : Ωk → N extends to fk+1 : Ωk+1 → N by linear extension:

fk+1(x, y, λ) = (1− λ)fk(x) + λfk(y).

We have a induced map f∞ : Ω∞ → N and a pullback metric d∞ = f∗∞dN .
Define

(Z, dZ) := (Ω∞/d∞, d∞).

Then Z is an NPC space and isometric to the closed convex hull C(f(Ω)).

Now consider a sequence of maps fk : Ω→ (Nk, dk). We say fk converges
to f : Ω→ (N∞, d∞) in the pullback sense, or the Korevaar-Schoen sense, if

(i) dk,∞ converges locally uniformly to d∞.
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(ii) f : Ω
i−→ Ω∞

q−→ (Ω∞/d∞, d∞) and N∞ := Ω∞/d∞.

The following proposition and theorem are properties and conditions for
a convergence in the Korevaar-Schoen sense [7].

Proposition 4.2. The pullback convergence has the following property.

(i) If Nk are NPC, then so is N∞.
(ii) If fk are energy minimizer, then so is f .

(iii) If fk are Γ-equivariant, then so is f .

Theorem 4.3. If fk : X → (Nk, dk) has a uniform modulus of continuity:

dk(fk(x), fk(y)) < C(x)dX(x, y),

then fk converges in the Korevaar-Schoen sense to f : X → N∞.

4.3. The Daskalopoulos-Dostoglou-Wentworth compactification.

Theorem 4.4. (Daskalopoulos, Dostoglou, and Wentworth [1])
Let X be a compact Riemann surface with genus > 1. Given an unbounded

sequence of irreducible SL(2,C)-representations ρk, corresponding harmonic

maps uk : X̃ → H3 converges to u∞ in the Korevaar-Schoen sense after
rescaling, where u∞ : X̃ → T for an R-tree T.

Sketch of the proof of Theorem 4.4. Given a sequence of irreducible SL(2,C)-
representations ρk : π1(X) → SL(2,C), the Donaldson-Corlette theorem

provides corresponding harmonic maps uk : X̃ → H3 (SL(2,C)/SU(2) ∼=
H3). Harmonic maps uk satisfies the following estimate (see [9])

sup
y∈BR(x)

|duk|(y) ≤ C(x,R)[E(uk)]
1
2 .

If we rescale the metrics dH3 by λk = E(uk)
1
2 and denote the rescaled

maps by ûk : X̃ → (H3, 1
λk
dH3), then

sup
y∈BR(x)

|dûk|(y) ≤ C(x,R).

Therefore, by Theorem 4.3 ûk converges in the Korevaar-Schoen sense to

u : X̃ → N∞,

where N∞ = Ω∞/d∞ is the Korevaar-Schoen limit. Then N∞ is indeed
an R-tree because (H3, 1

λk
d3
H) is δ

λk
-hyperbolic, so N∞ is 0-hyperbolic NPC

space, which is an R-tree. �

Recall that given an action of Γ on H3 by ρ : Γ → Isom(H3), the length
function lρ : Γ→ R ≥ 0 is defined by

lρ(γ) = inf
x∈H3

dH3(x, ρ(γ)x)
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for γ ∈ Γ. Similarly, given a Γ-equivariant map u : X̃ → H3, we define the
length function of u by

lu(γ) = inf
x∈X̃∞

dH3(u∞(x), u∞(γx)).

Theorem 4.5. (Daskalopoulos-Dostoglou-Wentworth [1])
The length function lu of the action of Γ on T is in the same projective

class of the Morgan-Shalen limit of ρk. Explicitly, for γ ∈ Γ,

lu(γ) = lim
k

1

λk
lûk(γ) = lim

k

1

λk
lρk(γ) = lρ(γ).
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