
Notes prepared by Andy Huang (Rice University)

In this note, we will discuss some motivating examples to guide us to seek holomorphic objects when
dealing with harmonic maps. This will lead us to a brief overview of the twistorial method for construction
of harmonic maps from surfaces. We will use the sources [Woo87], [Hit82], [Sma92], and [BR90] as references.
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1. Harmonic maps

1.1. Definitions and examples. Let us recall the definition of a harmonic map and discuss a few simple
examples, for completeness and motivation.

Definition 1.1. A smooth map φ : (M, g) → (N,h) between Riemannian manifolds is harmonic if it is a
critical point of the energy functional E(φ) given by

E(φ) =
1

2

∫
M

trgφ
∗hdvolM .

The Euler-Lagrange equation for the energy functional is called the harmonic map equation:

τφ = trg(∇dφ) = 0.

We call τφ the tension field of the map φ.

Examples of harmonic maps include:

(1) A constant speed parameterization γ : R→ (N,h) of a geodesic in N .
(2) A harmonic function f : (M, g)→ R
(3) A holomorphic map φ : (M,JM )→ (N, JN ) between complex manifolds.
(4) A parameterized surface X : (Σ2, g) → R3 is minimal if and only if X is harmonic and conformal.

(This example will be revisited soon.)

Under pretty mild conditions, it is usually possible to find harmonic maps and establish their uniqueness
(in a homotopy class). In this regard, when we have both the existence and uniqueness of a harmonic
map, we can consider them as a natural candidate for a map between spaces. For example, for negatively
curved target manifolds, a heat flow method can be applied to find harmonic maps. The model case is
the theory of harmonic maps between two compact hyperbolic surfaces. In this case, there is a one-to-one
correspondence between harmonic maps and homomorphisms of their fundamental groups (as the surfaces
are K(π, 1) spaces).
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1.2. Relating harmonic maps to holomorphic data. When M is two dimensional, we can formulate
an equivalent definition which associates harmonic maps to holomorphic data. To do this, let us introduce
a local complex coordinate z = x+ iy on M . Then, up to a conformal factor, the tension field is equal to

τφ =
(
φ−1∇N

)
∂
∂z

φ∗

(
∂

∂z

)
Here, we have complexified the pull-back tangent bundle. In other words, we are considering the complexi-
fication of the total derivative, (Dφ)C, as a section of TM ⊗ (φ−1TN)C. The harmonic map equation then
reads (

φ−1∇N
)

∂
∂z

φ∗

(
∂

∂z

)
= 0

or equivalently, the complex conjugate of the same equation(
φ−1∇N

)
∂
∂z

φ∗

(
∂

∂z

)
= 0.

Before we go further, let us recall a classical theorem of Chern:

Theorem 1.1. Let φ : M2 → Rn be a conformal mapping. Then its Guass map γ : M2 → Gror2 (Rn) is
antiholomorphic if and only if φ is harmonic.

In light of this theorem, we are going to try to detect harmonic maps through associated holomorphic
maps, which are more rigid and can be shown to exist by algebraic methods. At this point, let us record a
few notes and observations in order to make sense of the statement of Chern’s theorem:

(1) The Grassmannian space Gror2 (Rn) of oriented 2-planes in Rn has a natural complex structure
induced by its immersion

σ : Gror2 (Rn) ↪→ CPn

into a space with a complex structure JCPn . Here, where X,Y ∈ T0Rn define the 2-plane X ∧Y , we
have σ(X ∧ Y ) := X + iY .

(2) Note that J := σ∗(JCPn) serves as an almost complex structure for Gror2 (Rn), and can be expressed
locally as a rotation. At a point P ∈ Gror2 (Rn), let AP denote the rotation through P by an angle
of π

2 , so that AP ◦AP = −I. There is an identification of the tangent spaces:

TPGr
or
2 (Rn) = Hom(P, P⊥).

Using this identification, given a tangent vector V ∈ Hom(P, P⊥), we have J(V ) = V ◦ AP . We
easily see that J2(V ) = −V .

(3) The Gauss map is defined as one would expect: for every point p ∈M , γ(p) is the oriented 2-plane
Dφ(TpM) ∈ Gror2 (Rn), oriented to respect the orientation induced by Dφ.

(4) We call a map γ : (M,JM ) → (N, JN ) between almost-complex manifolds holomorphic when Dφ
intertwines the almost complex structures:

JN ◦Dγ = Dγ ◦ JM

(5) A key observation is the identity:

σ(Dφ(∂x) ∧Dφ(∂y)) = Dφ(∂x) + iDφ(∂y)

Furthermore, Dφ(∂x) + iDφ(∂y) = Dφ(∂z) ∈ CPn, since ∂
∂z = 1

2

[
∂
∂x + ∂

∂y

]
.

With these observations in hand, let us sketch a proof of Chern’s theorem.

Proof. The re-expression of the tension field of φ reveals that φ is harmonic precisely when ∂z(
∂φ
∂z ) = 0,. Since

σ ◦ γ(z) = ∂φ
∂z (z), anti-holormophicity of the Gauss map is equivalent to ∂z(

∂φ
∂z ) = λ(z)∂φ∂z for some smooth

function λ(z). Observe that ∂z(
∂φ
∂z ) is a multiple of the mean curvature vector, so that it is perpendicular

to both ∂φ
∂z and ∂φ

∂z . So, λ(z) ≡ 0. �
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We should appreciate this theorem, at least at face value, because it allows us to pass from finding
harmonic maps to finding holomorphic curves (which may be easier to classify, etc.). Twistor theory attempts
to generalize this theorem to general Riemannian manifold targets. We will soon discuss the case when the
target N is a 4-dimensional Riemannian manifold, replacing the space of oriented 2-planes in Rn with
Gror2 (TN), the fiber bundle over N whose fiber at y ∈ N is Gror2 (TyN). Let us first make put the situation
into a general framework.

2. Twistor fibrations

Definition 2.1. A twistor fibration π : Z → N is a fibration of an almost complex manifold (Z, JZ) over a
Riemannian manifold N for which, for any holomorphic map ψ : M → Z from an almost Hermitian manifold
with co-closed Kahler form, the composition π ◦ ψ : M → N is harmonic. When these objects exist, we call
ψ the twistor lift and φ the twistor projection.

The central problems pertaining harmonic maps in twistor theory are:

(1) Construct twistor fibrations π : Z → N .
(2) Do there always exist twistor lifts of harmonic maps? More precisely, if given φ : M → N harmonic,

can we find ψ : M → (Z, JZ) holomorphic such that φ = π ◦ ψ?
(3) When does the association of a harmonic map φ to its twistor lift ψ provide a 1-1 correspondence?
(4) Find holomorphic maps M → Z. In our case, M will be a Riemann surface, so this amounts to

finding holomorphic curves in Z. This actually lets us produce harmonic maps.

2.1. Motivation: Twistorial interpretation of the Weierstrass representation for minimal sur-
faces. Harmonic maps play a prevalent role in the theory of minimal surfaces in R3 because Chern’s theorem
tells us that a parameterization of a surface is minimal if and only if it is conformal and harmonic. The clas-
sical development of studying minimal surfaces stagnated until the advent of the Weierstrass representation
for minimal surfaces in R3. We will shortly describe the appearance of harmonic maps in this context and
the holomorphic data associated to them.

The Weierstrass representation is given by a choice of holomorphic and meromorphic forms F and G on
a Riemann surface Σ and then forming the parameterized surface

~φ(z) = (φ1, φ2, φ3)(z) = R
(∫ z

z0

1

2

(
1−G2

)
Fdζ,

∫ z

z0

i

2

(
1 +G2

)
Fdζ,

∫ z

z0

GFdζ

)
.

The symbol R denotes taking the real part of the function, so ~φ parameterizes a surface in R3. Note that in
order to define this, we need to pick an arbitrary point z0 ∈ Σ to begin integrating from. It turns out that

this surface is minimal! To see why, we will show that ~φ is both conformal and harmonic.

Well, it turns out that ~φ is conformal if and only if its Hopf differential (the (2,0)-part of the pullback
metric) vanishes. We can apply the Fundamental Theorem of Calculus to compute this:[(

D~φ
)∗

(dx2 + dy2 + dz2)
](2,0)

=

[
1

2

(
1−G2

)
F

]2
+

[
i

2

(
1 +G2

)
F

]2
+ [GF ]

2
= 0

That the map is harmonic is a simple consequence of the fact that each component function is the real part
of a holomorphic function! (We’ll assume the integrands have well-behaved poles.)

This parameterization originally came about by trying to exploit the fact that a harmonic function on C
can be expressed uniquely as the real part of a holomorphic function, and has been useful in characterizing
properties of complete minimal surfaces of finite total Guass curvature [Oss86]. It is worth pointing out that
the Gauss map is expressible in terms of the holomorphic data as γ = χ ◦ G, where χ : S2 → R2 denotes
stereographic projection.

To relate this representation to a twistor projection, we need to modify the representation somewhat,
working instead with its “Weierstrass representation in free form.” This parameterizes the surface by its
Gauss map variable G (see [Sma92] for more details). Let’s begin by defining a new function f implicitly by

f ′′′(ζ) = F ◦G−1(ζ)
dG−1

dζ
(ζ).
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Then the Weierstrass representation in free form is given by taking the real part of

φ1 ◦G−1(z) =
1

2
(1− z2)f ′′(z) + zf ′(z)− f(z)

φ2 ◦G−1(z) =
1

2
(1 + z2)f ′′(z) + izf ′(z) + if(z)

φ3 ◦G−1(z) = zf ′′(z)− f ′(z)

In free form, the metric and Guass curvature of the surface can be given in terms of just f ′′′:

ds2 =
1

2
|f ′′′(z)|2(1 + |z|)2R(dz ⊗ dz)

K(z) = − 8

|f ′′′(z)|2(1 + |z|2)2

For example, Enneper’s surface has F (z) = 1 and G(z) = z in the Weierestrass representation. In free
form, Enneper’s surface is determined by the data f(ζ) = 1

6ζ
3. Geometrically speaking, to see this, we can

invoke the uniqueness of minimal surfaces in R3 of −4π total Gaussian curvature with an order 3 end. This
forces Enneper’s surface to have these holomorphic data.

Let us now understand this from the twistorial point of view, as first recorded in [Hit82]. In order to do this,
we will construct a twistor fibration Z over the Euclidean space R3 and then exhibit the correspondence
by twistor lifts and projections between holorphic curves in Z with minimal surfaces in R3 given by the
Weierstrass representation in free form.

Let Z be the space of oriented geodesics in R3. Two vectors u ∈ S2 and v ∈ R3 are required to uniquely
specify the geodesic line v + t ·u ⊂ R3, thinking of v as the point on the geodesic closest to the origin and of
u as the direction of the geodesic. So, we have a parameterization of Z ∼= {(u, v) ∈ S2×R3|u ·v = 0}, where
we think of S2 as the unit sphere in R3. It turns out that Z is diffeomorphic to the tangent bundle of the
projectivized complex line, TCP 1, naturally equipped with its holomorphic structure. The induced complex
structure J can be realized by acting as the differential of the map on Z which reverses the orientation on
each line.

Now, suppose we have a minimal surface given by ~φ. Then there exists a unique holomorphic map
~x : Σ→ C3 so that

φ(z) = ~x(z) + ~x(z).

Well, ~x is a holomorphic curve η in C3 because of holomorphicity of φ, and it is even a null curve because
of conformality of φ (the Hopf differential of φ is precisely

∑
|∂~x∂z |).

On the other hand, suppose we have a holomorphic curve in Z. Note that the point x ∈ R3 corresponds
to a holomorphic section of π : Z → CP 1 = S2, given by all the lines (determined by their direction) that
go through x. This section will be of degree 2 because the tangent bundle of Cp1 has degree 2. Then we can
locally compute the osculating section to it, which will have the form

f(ω) = a+ bω + cω2,

for some parameterizing neighborhood ω ∈ UC of the osculated point. We have:

a+ bω + cω2 = f(ω)

b+ 2cω = f ′(ω)

2c = f ′′(ω)

Well, this data describes a holomorphic curve in C3 because f is holomorphic:

(a, b, c) = (f − ωf ′ + 1

2
ω2f ′′, f ′ − ωf ′′, 1

2
f ′′).

Furthermore it will be a null curve because

(b′)2 − 4a′c′ = ω(f ′′′)2 − 2f ′′′(
1

2
ω2f ′′′) = 0.
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Following [Hit82], we finish this computation by recognizing the identification of R3 inside Z. Any section
s(ω) of Z can be expressed as

s(ω) = ((x+ iy)− 2zω − (x− iy))
∂

∂ω
.

Finally, re-expressing this in standard coordinates recovers the Weierstrass representation in free form.

3. Example: Generalizing Chern’s Theorem

On a four dimensional Riemannian manifold N4, let us consider the fiber bundle of oriented 2-planes
π : Gror2 (TN) → N over it: over each point y ∈ N is the fiber Gror2 (TyN). Given a conformal map
φ : M2 → N , we can define its Gauss lift as the map ψ : M → Gror2 (TN) by taking ψ : x 7→ Dφ|x(TxM).
Now, in order to understand the relationship between harmonicity of φ and holomorphicity of ψ, have need
to find an almost complex structure on Gror2 (TN)

The Levi-Civita connection ∇N of N and the differential of the projection Dπ allow us to decompose the
tangent bundle TGror2 (TN) into horizontal and vertical sub-bundles: pointwise, this amounts to

TKGr
or
2 (TN) = im(Dπ|π(K))⊕ ker(Dπ|π(K)),

and we will write TGror2 (TN) = H ⊕ V. Now, in order to give Gror2 (TN) an almost complex structure, it
suffices to find an almost complex structure on each of the sub-bundles H and V.

Each fiber of the vertical space V is a vector space on which O(2n) acts by conjugation: for g ∈ O(2n),
we have the action g · J = gJg−1. The stabilizer of this action is U(n), so we have a natural isomorphism
Jx(N) ∼= O(2n)/U(n). This isomorphism endows V with an almost complex structure JV coming from the
fact that O(2n)/U(n) is a Hermitian symmetric space.

Proposition 3.1. Let φ : M2 → N4 be a conformal map. Then φ is harmonic if and only if its Gauss lift
ψ : M2 → Gror2 (TN) is vertically anti-holomorphic, i.e., that JV ◦Dψ = (Dψ ◦ JM )V where the superscript
V denotes projection onto V.

On the horizontal spaces, we can use the natural almost complex structure on Gror2 (TN) and push it
forward to N . To see this, take a point W ∈ Gror2 (TN). Let JHW denote the rotation by π

2 on W and W⊥,
considered as subspaces of Tπ(W )(N). Note that this is compatible with orientation, and we can denote the

globally defined almost complex structure on H by JH . Morally, φ is conformal if and only if its Gauss lift
is horizontally anti-holomorphic, as the choice of horizontal almost complex rendered it so.

Proposition 3.2. Let φ : M2 → N4 be a smooth immersion. Then φ is conformal if and only if its Gauss
lift is horizontally holomorphic, i.e., that JH ◦Dψ = (Dψ ◦JM )H where the superscript V denotes projection
onto H.

With these almost complex structures on sub-bundles, we can form two almost complex structures, J1 :=
JH +JV and J2 := JH−JV . (Note the reversal of the sign on JV to circumvent stating anti-holomorphicity
versus holomorphicity in certain theorems.) We can finally state:

Theorem 3.3. A smooth immersion φ : M2 → N4 is conformal and harmonic if and only if its Gauss lift
ψ : M2 → Gror2 (TN) is J2-holomorphic.

4. Example: Almost complex structures on an even-dimensional manifold

Consider an even-dimensional Riemannian manifold N2n. Let π : J(N) → N be the space of almost
complex structures compatible with the metric on N . The fibers are given by

Jx(N) = {J ∈ End(TxN)|J2 = −I, J skew-symmetric}.
We can define analogous almost complex structures on J(N) as above.

Theorem 4.1. A map φ : M → N2n of a Riemann surface has a J2-holomorphic lift ψ : M → J(N) if and
only if it is weakly conformal, harmonic, and φ∗ ((w1(N))) = 0.

It is worth noting that the almost complext manifolds (J(N), J1) and (J(N), J2) are not always well-
behaved. J2 is never integrable. On the other hand, we have the following concerning J1:
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Proposition 4.2. Let j ∈ J(N) with
√
−1-eigenspace T+ ⊂ Tπ(j)NC. Let R denote the Riemann curvature

tensor of ∇N . Then the Nijenhuis tensor of J1 vanishes at j if and only if R(T+, T+)T+ ⊂ T+

It follows from this proposition that J1 is integrable if and only if N is conformally flat. Nonetheless, this
leads us to find better twistor spaces which reflect the geometry of N .

5. Twistor fibrations over symmetric spaces

It turns out that there are reasonably nice twistor spaces for N a symmetric space.

Proposition 5.1. Suppose G/K is an inner symmetric space, i.e., rank(G) = rank(K). If H ⊂ K is a
centralizer of a torus, then the homogeneous fibration π : (G/H, J2)→ G/K is a twistor fibration.

Proof. There is at least one parabolic subgroup P of the complexified Lie group GC such that P ∩G = H,
so that G/H ∼= GC/P . This diffeomorphism induces a complex structure J1 on G/H coming from GC/P .
Similar to before, reverse the orientation of the complex structure on the vertical spaces. �

Theorem 5.2. Let φ : S2 → G/K be a harmonic map. Then there is a centralizer H ⊂ K of a torus in G
such that φ has a J2-holomorphic lift S2 → G/H into the twistor space (G/H, J2).

Definition 5.1. Complex flag manifolds are the homogeneous spaces G/H, where H is the centralizer of a
torus.

6. Getting new harmonic maps from a given one

6.1. Flag transform. Any harmonic map of the 2-sphere into a compact Lie group of type H can be
obtained by repeated flag transforms of a constant map (which is harmonic). (See Theorem 8.9 in [BR90]
for details and definitions.)

6.2. Uhlenbeck’s extended solutions via loop groups. There is a left-invariant almost complex struc-
ture on ΩG which coincides with the Kahler structure on the pseudo-horizontal distribution and makes the
map ΩG → G given by evaluation at −1 into a twistor fibration. (See Proposition 8.16 in [BR90] for more
information.)
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