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Disclaimer

These slides are precisely as they were during the lecture on July 27, 2012.
As such, they contain several omissions and inaccuracies, in both the
mathematics and the attributions. Some of these, it must be admitted, are
blemishes which reflect the author’s limitations, but others reflect the fact
that:

The slides formed but one part of the lectures. They were
accompanied by verbal commentary designed to explain and embellish
the contents of the slides

This is not a paper. Any talk has to strike a balance between
accuracy and accessibility. This balance inevitably involves the
inclusion of some half-truths and/or white lies.

The author apologizes to anyone who is in any way led astray by the
inaccuracies or slighted by the omissions.
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The plan for this lecture

Features of the Higgs bundle moduli spaces

An example
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Synopsis of Lecture II

A Higgs bundle on a Riemann surface Σ = (S , J) is a pair (E , ϕ) where

E = (E , ∂E ) is a rank n holomorphic bundle,

ϕ ∈ Ω(1,0)(End(E)) is holomorphic (i.e. ∂Eϕ = 0)

Repred (π1(S),GL(n, C)) ↔ MHiggs(Σ,GL(n, C))
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Synopsis of Lecture II

A Higgs bundle on a Riemann surface Σ = (S , J) is a pair (E , ϕ) where

E = (E , ∂E ) is a rank n holomorphic bundle,

ϕ ∈ Ω(1,0)(End(E)) is holomorphic (i.e. ∂Eϕ = 0)

Repred (π1(S),GL(n, C)) ↔ MHiggs(Σ,GL(n, C))

MHiggs(Σ,GL(n, C)) =

{

Isomorphism classes of polystable, rank n,
degree zero Higgs bundles on Σ

}

=

{

Isomorphism classes of (E , ϕ) where E
admits a metric satisfying Hitchin′s equation

}
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Properties of MHiggs
genus(Σ) = g

rank(E ) = n

complex analytic with dimC MHiggs = 2n2(g − 1) + 2
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Properties of MHiggs
genus(Σ) = g

rank(E ) = n

complex analytic with dimC MHiggs = 2n2(g − 1) + 2

symplectic Kahler (on smooth locus)

hyperkahler (on smooth locus)
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C
∗-action on MHiggs

genus(Σ) = g

rank(E ) = n

λ(E , ϕ) = (E , λϕ) where λ ∈ C
∗
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C
∗-action on MHiggs

genus(Σ) = g

rank(E ) = n

λ(E , ϕ) = (E , λϕ) where λ ∈ C
∗

preserves stability since

ϕ(E ′) ⊂ E ′ ⊗ KΣ

=⇒ (λϕ)(E ′) ⊂ E ′ ⊗ KΣ

Stability
deg(E ′) < 0

for all ϕ-invariant
E ′ ⊂ E
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C
∗-action on MHiggs

genus(Σ) = g

rank(E ) = n

λ(E , ϕ) = (E , λϕ) where λ ∈ C
∗

preserves stability since

ϕ(E ′) ⊂ E ′ ⊗ KΣ

=⇒ (λϕ)(E ′) ⊂ E ′ ⊗ KΣ

Stability
deg(E ′) < 0

for all ϕ-invariant
E ′ ⊂ E

defines an action on MHiggs by

λ[E , ϕ] = [E , λϕ]
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The Hitchin function on MHiggs

f : MHiggs → R

[E , ϕ] 7→

∫

Σ
|ϕ|2Hdvol = ||ϕ||2H

Introduced by Hitchin in his original papers

f is proper and bounded below (by zero)
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The Hitchin function on MHiggs

f : MHiggs → R

[E , ϕ] 7→

∫

Σ
|ϕ|2Hdvol = ||ϕ||2H

Introduced by Hitchin in his original papers

f is proper and bounded below (by zero)

f is a symplectic moment map for the S1 ⊂ C∗-action

critical points of f = fixed points of the C
∗-action [Frenkel]

Useful as Morse function! (GL(2, C) [Hitchin]; GL(3, C) [Gothen]..)
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The Hitchin fibration

In local frames over {Uα}, ϕ = φαdz with
φα ∈ gl(n, C) and φβ = gβαφαg−1

αβ
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The Hitchin fibration

In local frames over {Uα}, ϕ = φαdz with
φα ∈ gl(n, C) and φβ = gβαφαg−1

αβ

For any Ad-invariant polynomial P : gl(n, C) → C, can define

P(ϕ) = P(φαdz)

Example: Tr(ϕ),Tr(ϕ2), . . .
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αβ

For any Ad-invariant polynomial P : gl(n, C) → C, can define
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Example: Tr(ϕ),Tr(ϕ2), . . .

Take a set of generators for the ring of invariant polynomials
{P1, . . . ,PN}, homogeneous of degrees {d1, . . . , dN}.
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The Hitchin fibration

In local frames over {Uα}, ϕ = φαdz with
φα ∈ gl(n, C) and φβ = gβαφαg−1

αβ

For any Ad-invariant polynomial P : gl(n, C) → C, can define

P(ϕ) = P(φαdz)

Example: Tr(ϕ),Tr(ϕ2), . . .

Take a set of generators for the ring of invariant polynomials
{P1, . . . ,PN}, homogeneous of degrees {d1, . . . , dN}.

h : MHiggs →
N

⊕

i=1

H0(Kdi )
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The Hitchin fibration

In local frames over {Uα}, ϕ = φαdz with
φα ∈ gl(n, C) and φβ = gβαφαg−1

αβ

For any Ad-invariant polynomial P : gl(n, C) → C, can define

P(ϕ) = P(φαdz)

Example: Tr(ϕ),Tr(ϕ2), . . .

Take a set of generators for the ring of invariant polynomials
{P1, . . . ,PN}, homogeneous of degrees {d1, . . . , dN}.

h : MHiggs →
N

⊕

i=1

H0(Kdi )

generic fibers are tori

dimC

⊕N
i=1 H0(Kdi ) = 1

2 dimC MHiggs

this defines the Hitchin integrable system

[Hitchin]
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The case n = 2 (E , ϕ); deg(E ) = 0

E = (
∐

α Uα × C
2)/{gαβ}; ∂gαβ = 0 for holomorphic frames

ϕ = {ϕα = φαdz} with ∂φα = 0

Rank 2 =⇒ the only subbundles of E are line subbundles!

L ⊂ E means gαβ =

[

lαβ ∗
0 qαβ

]

where {lαβ} define L.
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Stability for (E , ϕ)

Two cases:
1 deg(L) ≤ 0 for all L ⊂ E , or

2 there exists an L such that deg(L) > 0

Steve Bradlow (UIUC) Higgs bundles Urbana-Champaign, July 2012 10 / 11
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Two cases:
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2 there exists an L such that deg(L) > 0

Case 1: E is (semi)stable and (E , ϕ) is (semi)stable for all ϕ.
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Stability for (E , ϕ)

Two cases:
1 deg(L) ≤ 0 for all L ⊂ E , or

2 there exists an L such that deg(L) > 0

Case 1: E is (semi)stable and (E , ϕ) is (semi)stable for all ϕ.

Case 2: The ‘bad’ L is unique and (E , ϕ) is (semi)stable if and only if L is
not ϕ-invariant.

Example (E = L ⊕Q with deg(L) > 0)

ϕ =

[

a b

c d

]

=⇒ ϕ(L) ⊂ LKΣ ⇐⇒ c = 0

(E , ϕ) is stable if and only if c 6= 0
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A special case

E = L ⊕ L∗ with deg(L) > 0

ϕ =

[

0 b

c 0

]

with c 6= 0

Note:
If L is defined by {lαβ} then L∗ is defined by {l−1

αβ
}.

This explains why L∗ = L−1.

Lecture continued on the blackboard...
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