Introduction to Higgs bundles

Steve Bradlow
Department of Mathematics
University of Illinois at Urbana-Champaign

July 23-27, 2012

Disclaimer

These slides are precisely as they were during the lectures on July 23, 25, 27, 2012. As such, they contain several omissions and inaccuracies, in both the mathematics and the attributions. Some of these, it must be admitted, are blemishes which reflect the author's limitations, but others reflect the fact that:

- The slides formed but one part of the lectures. They were accompanied by verbal commentary designed to explain and embellish the contents of the slides
- This is not a paper. Any talk has to strike a balance between accuracy and accessibility. This balance inevitably involves the inclusion of some half-truths and/or white lies.

The author apologizes to anyone who is in any way led astray by the inaccuracies or slighted by the omissions.

Goals and plan for this mini-course

- What are Higgs bundles?
- How do they relate to surface group representations?
- What do we gain by taking the Higgs bundle point of view?

Goals and plan for this mini-course

- What are Higgs bundles?
- How do they relate to surface group representations?
- What do we gain by taking the Higgs bundle point of view?

The Plan:
(1) (Lectures I and II)Description of surface group representations from a bundle perspective, with necessary background to define Higgs bundles and to see their relation to the representations
(2) (Lecture III) Examples and properties of Higgs bundles

The main dramatis personae

- S a closed surface of genus g
- G a Lie group (mostly GL(n, \mathbb{C}) for us)

The main dramatis personae

- S a closed surface of genus g
- G a Lie group (mostly $\operatorname{GL}(n, \mathbb{C})$ for us)

Representations $\rho: \pi_{1}(S) \rightarrow G$

- $\pi_{1}(S)=<a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g} \mid \prod_{i}\left(a_{i} b_{i} a_{i}^{-1} b_{i}^{-1}\right)=1>$
- $\rho:\left\{\begin{array}{l}a_{i} \mapsto \alpha_{i} \\ b_{i} \mapsto \beta_{i}\end{array}\right.$
such that $\prod_{i}\left(\alpha_{i} \beta_{i} \alpha_{i}^{-1} \beta_{i}^{-1}\right)=1$

The main dramatis personae

- S a closed surface of genus g
- G a Lie group (mostly $\operatorname{GL}(n, \mathbb{C})$ for us)

Representations $\rho: \pi_{1}(S) \rightarrow G$

- $\pi_{1}(S)=<a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g} \mid \prod_{i}\left(a_{i} b_{i} a_{i}^{-1} b_{i}^{-1}\right)=1>$
- $\rho:\left\{\begin{array}{l}a_{i} \mapsto \alpha_{i} \\ b_{i} \mapsto \beta_{i}\end{array}\right.$
such that $\prod_{i}\left(\alpha_{i} \beta_{i} \alpha_{i}^{-1} \beta_{i}^{-1}\right)=1$

Higgs bundles on $\Sigma=(S, J)$, i.e. pairs (\mathcal{E}, φ)

- $\mathcal{E} \rightarrow \Sigma$ a rank n holomorphic bundle
- $\varphi: \mathcal{E} \rightarrow \mathcal{E} \otimes\left(T^{1,0} \Sigma\right)^{*}$, i.e. $\varphi \in H^{0}\left(E n d\left(\mathcal{E} \otimes K_{\Sigma}\right)\right.$

From $\rho: \pi_{1}(s) \rightarrow G$ to (\mathcal{E}, φ) (with $G=\operatorname{GL}(n, \mathbb{C})$)

Step 1: from $\rho: \pi_{1}(S) \rightarrow G$ to a G-Local Systems

- Take the universal cover $\tilde{S} \xrightarrow{c} S$
- path lifting defines local sections
- $\pi_{1}(S)$ acts on \tilde{S} preserving fibers of c

Use $\rho: \pi_{1}(S) \rightarrow G$ to construct $\tilde{S} \times G / \pi_{1}(S)=\tilde{S} \times \rho G[A$ local system]

Structure of $\tilde{S} \times{ }_{\rho} G$

Over U_{α}

$$
\begin{gathered}
\tilde{S} \times\left._{\rho} G\right|_{U_{\alpha}} \simeq U_{\alpha} \times G \\
{\left[\sigma_{\alpha}(x), g\right] \leftrightarrow(x, g)}
\end{gathered}
$$

Over $U_{\alpha} \cap U_{\beta}$

$$
\begin{array}{cc}
{\left[\sigma_{\beta}(x), g\right]} & \\
\left.\sigma_{\alpha}(x)=\mid x, g\right) \\
\downarrow & {\left[\gamma_{\alpha \beta}\right] \sigma_{\beta}(x)} \\
{\left[\sigma_{\alpha}(x), \rho\left[\gamma_{\alpha \beta}\right] g\right]<} & \downarrow \rho\left[\gamma_{\alpha \beta}\right] \\
& \left(x, \rho\left[\gamma_{\alpha \beta}\right] g\right)
\end{array}
$$

$\tilde{S} \times{ }_{\rho} G$ is a G-Local System described by:

- $\left\{U_{\alpha}\right\}_{\alpha \in I}$ (open cover of S)
- $\left\{g_{\alpha \beta}=\rho\left(\left[\gamma_{\alpha \beta}\right]\right)\right\}$ (transition data satisfying $\left.\left\{g_{\alpha \beta} g_{\beta \delta} g_{\delta \alpha}=1\right\}\right)$

Monodromy

Any G-Local System defines a representation $\rho: \pi_{1}(S) \rightarrow G$ by monodromy:

- cover loop γ by $U_{1}, U_{2}, \ldots, U_{k}$
- define $\rho([\gamma])=$

$$
g_{N(N-1)} g_{(N-1)(N-2)} \ldots g_{21}
$$

Monodromy

Any G-Local System defines a representation $\rho: \pi_{1}(S) \rightarrow G$ by monodromy:

- cover loop γ by $U_{1}, U_{2}, \ldots, U_{k}$
- define $\rho([\gamma])=$

$$
g_{N(N-1)} g_{(N-1)(N-2)} \ldots g_{21}
$$

Coming up:

- G-Local System $=$ bundle with flat connection
- monodromy $=$ holonomy

Vector Bundles

Vector Bundles

Bundle Basics: I. Vector bundles over M

```
V\longrightarrowE
```

- a cover $\left\{U_{\alpha}\right\}_{\alpha \in I}$ for M
- local trivializations $\left.E\right|_{U_{\alpha}} \simeq U_{\alpha} \times V$
- transition functions (gluing data): $g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \mathrm{GL}(V)$

Bundle Basics: I. Vector bundles over M

- a cover $\left\{U_{\alpha}\right\}_{\alpha \in I}$ for M
- local trivializations $\left.E\right|_{U_{\alpha}} \simeq U_{\alpha} \times V$
- transition functions (gluing data): $g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \mathrm{GL}(V)$

$$
E=\left(\coprod_{\alpha \in I} U_{\alpha} \times V\right) / \sim \text { where }\left(x, v_{\alpha}\right) \sim\left(x, g_{\alpha \beta}(x) v_{\beta}\right)
$$

- Cocycle condition on triple overlaps:

$$
g_{\alpha \beta} g_{\beta \gamma} g_{\gamma \alpha}=1
$$

Bundle Basics: I. Vector bundles over M

- a cover $\left\{U_{\alpha}\right\}_{\alpha \in I}$ for M
- local trivializations $\left.E\right|_{U_{\alpha}} \simeq U_{\alpha} \times V$
- transition functions (gluing data): $g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \mathrm{GL}(V)$

$$
E=\left(\coprod_{\alpha \in I} U_{\alpha} \times V\right) / \sim \text { where }\left(x, v_{\alpha}\right) \sim\left(x, g_{\alpha \beta}(x) v_{\beta}\right)
$$

- Cocycle condition on triple overlaps:

$$
g_{\alpha \beta} g_{\beta \gamma} g_{\gamma \alpha}=1
$$

Example

If $g_{\alpha \beta}=I$ for all $U_{\alpha} \cap U_{\beta} \neq \emptyset$ then $E=M \times V$

Bundle Basics: Principal and associated bundles

- $\left\{U_{\alpha}\right\}+\left\{g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G\right\}=E_{G}$

Principal G-bundle

$$
E_{G}=\left(\coprod_{\alpha \in I} U_{\alpha} \times G\right) / \sim \text { where }\left(x, g_{\beta}\right) \sim\left(x, g_{\alpha \beta}(x) g_{\beta}\right)
$$

Bundle Basics: Principal and associated bundles

$$
\text { - }\left\{U_{\alpha}\right\}+\left\{g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G\right\}=E_{G}
$$

Principal G-bundle

$$
E_{G}=\left(\coprod_{\alpha \in I} U_{\alpha} \times G\right) / \sim \text { where }\left(x, g_{\beta}\right) \sim\left(x, g_{\alpha \beta}(x) g_{\beta}\right)
$$

- $E_{G}+\{r: G \rightarrow \mathrm{GL}(V)\}=E_{G}(V)\left(\right.$ or $\left.E_{V}\right)$

Associated V-bundle

$$
E_{G}(V)=\left(\coprod_{\alpha \in I} U_{\alpha} \times V\right) / \sim \text { where }\left(x, v_{\alpha}\right) \sim\left(x, r\left(g_{\alpha \beta}(x)\right) v_{\beta}\right)
$$

Bundle Basics: Principal and associated bundles

$$
\text { - }\left\{U_{\alpha}\right\}+\left\{g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G\right\}=E_{G}
$$

Principal G-bundle

$$
E_{G}=\left(\coprod_{\alpha \in I} U_{\alpha} \times G\right) / \sim \text { where }\left(x, g_{\beta}\right) \sim\left(x, g_{\alpha \beta}(x) g_{\beta}\right)
$$

- $E_{G}+\{r: G \rightarrow \mathrm{GL}(V)\}=E_{G}(V)\left(\right.$ or $\left.E_{V}\right)$

Associated V-bundle

$$
E_{G}(V)=\left(\coprod_{\alpha \in I} U_{\alpha} \times V\right) / \sim \text { where }\left(x, v_{\alpha}\right) \sim\left(x, r\left(g_{\alpha \beta}(x)\right) v_{\beta}\right)
$$

Example $(G=\mathrm{GL}(n, \mathbb{C}))$
$V=\mathfrak{g l}(n, \mathbb{C}) ; r=$ adjoint $\Longrightarrow E_{G}(V)=\operatorname{End}(E)$

G-Local Systems as Principal Bundles

A G-Local System is the same thing as a Principal G-bundle described by transition functions that are locally constant, i.e.

$$
d g_{\alpha \beta}=0
$$

G-Local Systems as Principal Bundles

A G-Local System is the same thing as a Principal G-bundle described by transition functions that are locally constant, i.e.

$$
d g_{\alpha \beta}=0
$$

Definition (Flat bundles)

For a bundle E, a choice of local trivializations for which $d g_{\alpha \beta}=0$ is called a flat structure on the bundle. A bundle together with a flat structure is called a flat bundle

G-Local Systems as Principal Bundles

A G-Local System is the same thing as a Principal G-bundle described by transition functions that are locally constant, i.e.

$$
d g_{\alpha \beta}=0
$$

Definition (Flat bundles)

For a bundle E, a choice of local trivializations for which $d g_{\alpha \beta}=0$ is called a flat structure on the bundle. A bundle together with a flat structure is called a flat bundle

- (With $M=S$)

> | Representations |
| :--- |
| $\pi_{1}(S) \rightarrow G$ |

correspond to

flat principal
G-bundles

The next step....

Connections on vector bundles...

$E \xrightarrow{\pi} M$

..provide the solution to the following:
(1) At a point $q \in E$ which directions are "horizontal" or "parallel to the base"

Connections on vector bundles...

$E \xrightarrow{\pi} M$

..provide the solution to the following:
(1) At a point $q \in E$ which directions are "horizontal" or "parallel to the base"
(2) How to compare fibers over different points in the base?

Connections on vector bundles...

$E \xrightarrow{\pi} M$

..provide the solution to the following:
(1) At a point $q \in E$ which directions are "horizontal" or "parallel to the base"
(2) How to compare fibers over different points in the base?
(3) How to measure variations in fiber direction with respect to motion along base?

Horizontal directions

$$
E \xrightarrow{\pi} M
$$

$$
0 \longrightarrow V_{q} \longrightarrow T_{q} E \underset{?}{\stackrel{\pi_{*}}{\longrightarrow}} T_{(q)} M \longrightarrow 0 \text { ? }
$$

- Vertical directions lie in $V_{q}=K e r \pi_{*}$.
- How do we identify a complementary subspace 'parallel' to $T_{\pi(q)} M$?

Variations of sections

Local picture - using trivialization Ψ_{α} over $U_{\alpha} \subset M \ldots$

Variations of sections

Local picture - using trivialization Ψ_{α} over $U_{\alpha} \subset M \ldots$

..or, in terms of local frame $\left\{\mathbf{e}_{\alpha}^{i}(x)=\Psi_{\alpha}^{-1}\left(x, e^{i}\right)\right\}$,

$$
S(x)=\sum_{i=1}^{n} s_{\alpha}^{i}(x) \mathbf{e}_{\alpha}^{i}(x)
$$

- $d s_{\alpha}^{i}(x)$ measures variation of coefficients (i.e. local sections)
- How do we take into account variation of the local frame ?

What a connection is:

(1) In terms of local frames $\left.\left\{\mathbf{e}_{\alpha}^{i}(x)\right\}: \mathfrak{g l (n}, \mathbb{C}\right)$-valued 1-forms related by

$$
A_{\alpha}=g_{\alpha \beta} A_{\beta} g_{\alpha \beta}^{-1}+g_{\alpha \beta} d g_{\alpha \beta}^{-1}
$$

What a connection is:

(1) In terms of local frames $\left\{\mathbf{e}_{\alpha}^{i}(x)\right\}: \mathfrak{g l}(\mathfrak{n}, \mathbb{C})$-valued 1-forms related by

$$
A_{\alpha}=g_{\alpha \beta} A_{\beta} g_{\alpha \beta}^{-1}+g_{\alpha \beta} d g_{\alpha \beta}^{-1}
$$

(2) Globally: a \mathbb{C}-linear operator satisfying a Leibniz rule

$$
\begin{gathered}
D: \Omega^{0}(E) \rightarrow \Omega^{1}(E) \\
D(f S)=(d f) S+f D S
\end{gathered}
$$

$$
\left[\Omega^{k}(E)=k \text {-forms with values in } E, f \in C^{\infty}(M), S \in \Omega^{0}(E)\right]
$$

What a connection is:

(1) In terms of local frames $\left\{\mathbf{e}_{\alpha}^{i}(x)\right\}: \mathfrak{g l}(\mathfrak{n}, \mathbb{C})$-valued 1-forms related by

$$
A_{\alpha}=g_{\alpha \beta} A_{\beta} g_{\alpha \beta}^{-1}+g_{\alpha \beta} d g_{\alpha \beta}^{-1}
$$

(2) Globally: a \mathbb{C}-linear operator satisfying a Leibniz rule

$$
\begin{gathered}
D: \Omega^{0}(E) \rightarrow \Omega^{1}(E) \\
D(f S)=(d f) S+f D S
\end{gathered}
$$

$\left[\Omega^{k}(E)=k\right.$-forms with values in $\left.E, f \in C^{\infty}(M), S \in \Omega^{0}(E)\right]$

$$
D \mathbf{e}_{\alpha}^{i}(x)=\left[A_{\alpha}(x)\right]_{j i} \mathbf{e}_{\alpha}^{j}(x)
$$

Definition

With respect to connection D a section $S \in \Omega^{0}(E)$ is called

- parallel if $D S=0$

Definition

With respect to connection D a section $S \in \Omega^{0}(E)$ is called

- parallel if $D S=0$
- parallel along a curve $\gamma:[0,1] \rightarrow M$ if

$$
\begin{equation*}
\left(D_{\dot{\gamma}(t)} S\right)(\gamma(t))=0 \forall t \in(0,1) \tag{1}
\end{equation*}
$$

Definition

With respect to connection D a section $S \in \Omega^{0}(E)$ is called

- parallel if $D S=0$
- parallel along a curve $\gamma:[0,1] \rightarrow M$ if

$$
\begin{equation*}
\left(D_{\dot{\gamma}(t)} S\right)(\gamma(t))=0 \forall t \in(0,1) \tag{1}
\end{equation*}
$$

- $D S=0$ is an overconstrained system of PDE's
- Given $S(0)=S(\gamma(0))$, (??) has a unique solution along any curve.

Parallel sections along curves define horizontal lifts to E of curves in M

To split

$$
0 \longrightarrow V_{q} \longrightarrow T_{q} E \underset{?}{\stackrel{\pi_{*}}{\longrightarrow}} T_{\pi(q)} M \longrightarrow 0
$$

use horizontal lifts:

- For $v \in T_{x} M$ pick a path γ such that $v=\dot{\gamma}(0)$,
- Define

$$
v \mapsto \dot{\gamma}_{q}^{h}(0)
$$

where $\gamma_{q}^{h}(t)$ is the horizontal lift of γ through q to get
$H_{q}=\{$ tangents to horizontal lifts of curves through $x=\pi(q)\}$

- $T_{q} E=V_{q} \oplus H_{q}$

To compare $E_{X_{1}}$ and $E_{X_{2}}$

- Pick a path γ with $\gamma(0)=x_{1}$ and $\gamma(1)=x_{2}$
- For each $q \in E_{x_{1}}$ take

$$
q \mapsto \gamma_{q}^{h}(1)
$$

where $\gamma_{q}^{h}(t)$ is the horizontal lift of γ through q to get

Get a linear map

$$
P_{\gamma}: E_{x_{1}} \rightarrow E_{x_{2}}
$$

called Parallel Transport along γ.

Holonomy around loops in M

$$
E \xrightarrow{\pi} M, D
$$

- $\gamma:[0,1] \rightarrow M$ with $\gamma(0)=x=\gamma(1)$

Holonomy around loops in M

- $\gamma:[0,1] \rightarrow M$ with $\gamma(0)=x=\gamma(1)$

Definition

Parallel transport $P_{\gamma}: E_{X} \rightarrow E_{x}$ defines a linear map on E_{x} called the holonomy around γ

- In general the holonomy map depends on the loop γ
- Under special conditions the map depends only on the homotopy class $[\gamma] \in \pi_{1}(S, x) \ldots$

Curvature of a connection

$E \xrightarrow{\pi} M, D$

What it tells us....

- $H_{q} \subset T_{q} M$ defines the horizontal distribution $\mathfrak{D} \subset T M$.

Curvature of a connection

$E \xrightarrow{\pi} M, D$

What it tells us....

- $H_{q} \subset T_{q} M$ defines the horizontal distribution $\mathfrak{D} \subset T M$. When is this integrable?
- Local sections $\left\{S_{1}, S_{2}, \ldots S_{n}\right\}$ such that
(1) $D S_{i}=0$
(2) $\left\{S_{1}(x), S_{2}(x), \ldots S_{n}(x)\right\}$ linearly independent at all x define a horizontal local frame. When can we find horizontal local frames?

Curvature of a connection

$E \xrightarrow{\pi} M, D$

What it is....

- In a local frame: $(D=d+A)$

$$
F_{D}=d A+A \wedge A
$$

A matrix-valued 2-form

- As a global operator: $\left(\Omega^{0}(E) \xrightarrow{D} \Omega^{1}(E) \xrightarrow{D} \Omega^{2}(E)\right)$

$$
F_{D}=D \cdot D=D^{2}
$$

A section in $\Omega^{2}(E n d(E))$

Flat connections

$$
E \xrightarrow{\pi} M, D
$$

Definition

A connection D on E is flat if $F_{D}=0$

Example

If E has local trivializations with $d g_{\alpha \beta}=0$, i.e. a flat structure, then

$$
A_{\alpha}=0
$$

defines a connection. The curvature clearly vanishes.

Implications of flatness

$$
E \xrightarrow{\pi} M, F_{D}=0
$$

- Horizontal local frames \Longrightarrow locally constant transition functions, i.e.

Implications of flatness

$$
E \xrightarrow{\pi} M, F_{D}=0
$$

- Horizontal local frames \Longrightarrow locally constant transition functions, i.e.

Flat connections define flat structures

- Holonomy around a loop γ depends only on $[\gamma] \in \pi_{1}(M)$, i.e.

Holonomy defines $\rho: \pi_{1}(M) \rightarrow \operatorname{GL}(n, \mathbb{C})$

Summary..so far

$$
\begin{array}{cc}
\hline \rho: \pi_{1}(M) \rightarrow \mathrm{GL}(n, \mathbb{C}) & \longleftarrow \\
\downarrow \uparrow \text { monodromy } & \text { Holonomy representation } \\
\hline \text { Flat GL }(n, \mathbb{C}) \text {-bundles } & \longleftrightarrow E \rightarrow M \text { with } F_{D}=0
\end{array}
$$

Summary..so far

$$
\begin{array}{cc}
\hline \rho: \pi_{1}(M) \rightarrow \mathrm{GL}(n, \mathbb{C}) & \longleftarrow \\
\downarrow \uparrow \text { monodromy } & \uparrow \\
\hline \text { Flat GL }(n, \mathbb{C}) \text {-bundles } & \longleftrightarrow E \rightarrow M \text { with } F_{D}=0
\end{array}
$$

next: how to build flat connections....using

- complex structures
- metric structures

Complex structures on a manifold M

- complex coordinate charts $\Psi_{\alpha}: U_{\alpha} \rightarrow \mathbb{C}^{m}$
- holomorphic coordinate transformations: $\Psi_{\beta} \Psi_{\alpha}^{-1}: \mathbb{C}^{m} \rightarrow \mathbb{C}^{m}$
- denote by J

Example $(M=S)$

- $\operatorname{dim}_{\mathbb{C}}=1$
- $(S, J)=\Sigma$, a Riemann surface
- equivalent to choice of conformal structure

Complex structures on a manifold M

- complex coordinate charts $\Psi_{\alpha}: U_{\alpha} \rightarrow \mathbb{C}^{m}$
- holomorphic coordinate transformations: $\Psi_{\beta} \Psi_{\alpha}^{-1}: \mathbb{C}^{m} \rightarrow \mathbb{C}^{m}$
- denote by J

Example $(M=S)$

- $\operatorname{dim}_{\mathbb{C}}=1$
- $(S, J)=\Sigma$, a Riemann surface
- equivalent to choice of conformal structure

With respect to J :

$$
\begin{array}{clcc}
\Omega^{1}(M, \mathbb{C}) & =\Omega^{(0,1)}(M, \mathbb{C}) & \oplus & \Omega^{(1,0)}(M, \mathbb{C}) \\
\left\{d x_{1}, \ldots d x_{2 m}\right\} & \rightarrow\left\{d z_{1}, \ldots, d z_{m}\right\} & +\left\{d \bar{z}_{1}, \ldots d \bar{z}_{m}\right\}
\end{array}
$$

Complex structures on a manifold M

- complex coordinate charts $\Psi_{\alpha}: U_{\alpha} \rightarrow \mathbb{C}^{m}$
- holomorphic coordinate transformations: $\Psi_{\beta} \Psi_{\alpha}^{-1}: \mathbb{C}^{m} \rightarrow \mathbb{C}^{m}$
- denote by J

Example $(M=S)$

- $\operatorname{dim}_{\mathbb{C}}=1$
- $(S, J)=\Sigma$, a Riemann surface
- equivalent to choice of conformal structure

With respect to J :

$$
\begin{array}{ccccc}
\Omega^{1}(M, \mathbb{C}) & = & \Omega^{(0,1)}(M, \mathbb{C}) & \oplus & \Omega^{(1,0)}(M, \mathbb{C}) \\
\left\{d x_{1}, \ldots d x_{2 m}\right\} & \rightarrow & \left\{d z_{1}, \ldots, d z_{m}\right\} & + & \left\{d \bar{z}_{1}, \ldots d \bar{z}_{m}\right\} \\
d & = & \bar{\partial} & + & \partial
\end{array}
$$

Holomorphic structures on a vector bundle $E \rightarrow M \ldots$

...can be described in three ways:

- complex structures on E and M such that $\pi: E \rightarrow M$ is holomorphic,

Holomorphic structures on a vector bundle $E \rightarrow M$...

...can be described in three ways:

- complex structures on E and M such that $\pi: E \rightarrow M$ is holomorphic,
- a system of local trivializations with holomorphic transition functions,

Holomorphic structures on a vector bundle $E \rightarrow M \ldots$

...can be described in three ways:

- complex structures on E and M such that $\pi: E \rightarrow M$ is holomorphic,
- a system of local trivializations with holomorphic transition functions,
- a 'partial connection', i.e. $\bar{\partial}_{E}: \Omega^{0}(E) \rightarrow \Omega^{(0,1)}(E)$ such that

$$
\begin{aligned}
& \bar{\partial}_{E}(f S)=(\bar{\partial} f) S+f \bar{\partial}_{E} S(\text { Leibniz }) \\
& \bar{\partial}_{E}^{2}=0(\text { Integrability })
\end{aligned}
$$

$\mathcal{E}=\left(E, \bar{\partial}_{E}\right)$ defines a holomorphic bundle

Holomorphic structures on a vector bundle $E \rightarrow M \ldots$

...can be described in three ways:

- complex structures on E and M such that $\pi: E \rightarrow M$ is holomorphic,
- a system of local trivializations with holomorphic transition functions,
- a 'partial connection', i.e. $\bar{\partial}_{E}: \Omega^{0}(E) \rightarrow \Omega^{(0,1)}(E)$ such that

$$
\begin{aligned}
& \bar{\partial}_{E}(f S)=(\bar{\partial} f) S+f \bar{\partial}_{E} S(\text { Leibniz }) \\
& \bar{\partial}_{E}^{2}=0(\text { Integrability })
\end{aligned}
$$

$\mathcal{E}=\left(E, \bar{\partial}_{E}\right)$ defines a holomorphic bundle
A section $S \in \Omega^{0}(\mathcal{E})$ is holomorphic iff

- $\bar{\partial}_{E} S=0$
- In local frames $\left\{\mathbf{e}_{\alpha}^{i}\right\}$ with $\bar{\partial} g_{\alpha \beta}=0$, if $S(z)=\sum_{i=1}^{n} s_{\alpha}^{i}(z) \mathbf{e}_{\alpha}^{i}(z)$ then $\bar{\partial} s_{\alpha}^{i}(z)=0$.

Holomorphic versus flat structures

 $E \rightarrow(M, J)$| | Flat | Holomorphic |
| :---: | :---: | :---: |
| Transition
 functions | $d g_{\alpha \beta}=0$ | $\bar{\partial} g_{\alpha \beta}=0$ |
| Operator
 Leibniz rule | $D: \Omega^{0}(E) \rightarrow \Omega^{1}(E)$ | $\bar{\partial}_{E}: \Omega^{0}(E) \rightarrow \Omega^{(0,1)}(E)$ |

Holomorphic versus flat structures

	Flat	Holomorphic
Transition functions	$d g_{\alpha \beta}=0$	$\bar{\partial} g_{\alpha \beta}=0$
Operator	$D: \Omega^{0}(E) \rightarrow \Omega^{1}(E)$	$\bar{\partial}_{E}: \Omega^{0}(E) \rightarrow \Omega^{(0,1)}(E)$
Leibniz rule	$D(f S)=(d f) S+f D s$	$\bar{\partial}_{E}(f S)=(\bar{\partial} f) S+f \bar{\partial}_{E} S$
Integrability	$D^{2}=0$	$\bar{\partial}_{E}^{2}=0$

Holomorphic versus flat structures

	Flat	Holomorphic
Transition functions	$d g_{\alpha \beta}=0$	$\bar{\partial} g_{\alpha \beta}=0$
Operator	$D: \Omega^{0}(E) \rightarrow \Omega^{1}(E)$	$\bar{\partial}_{E}: \Omega^{0}(E) \rightarrow \Omega^{(0,1)}(E)$
Leibniz rule	$D(f S)=(d f) S+f D s$	$\bar{\partial}_{E}(f S)=(\bar{\partial} f) S+f \bar{\partial}_{E} S$
Integrability	$D^{2}=0$	$\bar{\partial}_{E}^{2}=0$
Special local frames	horizontal local frames in which $D=d$	holomorphic local frames in which $\bar{\partial}_{E}=\bar{\partial}$

Holomorphic versus flat structures

	Flat	Holomorphic
Transition functions	$d g_{\alpha \beta}=0$	$\bar{\partial} g_{\alpha \beta}=0$
Operator	$D: \Omega^{0}(E) \rightarrow \Omega^{1}(E)$	$\bar{\partial}_{E}: \Omega^{0}(E) \rightarrow \Omega^{(0,1)}(E)$
Leibniz rule	$D(f S)=(d f) S+f D s$	$\bar{\partial}_{E}(f S)=(\bar{\partial} f) S+f \bar{\partial}_{E} S$
Integrability	$D^{2}=0$	$\bar{\partial}_{E}^{2}=0$
Special local frames	horizontal local frames in which $D=d$	holomorphic local frames in which $\bar{\partial}_{E}=\bar{\partial}$

- Flat \Longrightarrow holomorphic
- On a Riemann surface, $\bar{\partial}_{E}^{2}=0$ is automatic $(d \bar{z} \wedge d \bar{z}=0)$.
- $\bar{\partial}_{E}$ defines the $(0,1)$ part of a connection. Can complete to a connection using a hermitian metric......

Hermitian metrics on complex bundles

- A smoothly varying family $H\left(\right.$,) of hermitian metrics on E_{x},

Hermitian metrics on complex bundles

- A smoothly varying family $H\left(\right.$,) of hermitian metrics on E_{X},
- defines $H\left(S, S^{\prime}\right)(x) \in \mathbb{C}$ for sections $S, S^{\prime} \in \Omega^{0}(E)$

Hermitian metrics on complex bundles

- A smoothly varying family $H\left(\right.$,) of hermitian metrics on E_{x},
- defines $H\left(S, S^{\prime}\right)(x) \in \mathbb{C}$ for sections $S, S^{\prime} \in \Omega^{0}(E)$
- Facilitates local unitary frames, and thus
- Local trivializations for which all $g_{\alpha \beta} \in \mathrm{U}(n) \subset \mathrm{GL}(n, \mathbb{C})$, i.e.

Hermitian metrics on complex bundles

- A smoothly varying family $H\left(\right.$,) of hermitian metrics on E_{x},
- defines $H\left(S, S^{\prime}\right)(x) \in \mathbb{C}$ for sections $S, S^{\prime} \in \Omega^{0}(E)$
- Facilitates local unitary frames, and thus
- Local trivializations for which all $g_{\alpha \beta} \in \mathrm{U}(n) \subset \mathrm{GL}(n, \mathbb{C})$, i.e.
- Defines a reduction of structure group from $\mathrm{GL}(n, \mathbb{C})$ to $\mathrm{U}(n)$.

End of Lecture I

