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This note is an exposition of [MSWW1] and is organised as follows.
First section is an introduction setting the stage and introducing the rele-
vant structures and the main theorem of [MSWW1]. Secondly we present
constructions of solutions to the anti-self-dual equations and its dimensional
reductions to put [MSWW1] in a larger context. Thirdly we go into the
nuts and bolts of the paper; this includes a description of a so called limit-
ing configuration and desingularisation of these, followed by a perturbation
argument to obtain exact solutions to the Higgs bundle equations. Lastly
we describe a different more natural complex geometric construction of the
limiting configurations which simplify parts of [MSWW1].

1 Introduction

First let us set some notation straight. We denote by X a smooth compact
Riemann surface of genus g ≥ 2 and E a Hermitian vector bundle of rank
two. The Higgs bundle equations are equations for a pair (A,Φ) of a unitary
connection on E and Φ an EndE-valued (1, 0)-form on X. We will fix a
background connection A0 on E and only consider connections A which
induce the same connections on detE as A0, that is A = A0 + α where
α ∈ Ω1(su(E)). We furthermore require that the Higgs field is trace-free,
i.e. Tr Φ = 0. In this case the Higgs bundle equations are

F⊥A + [Φ,Φ∗] = 0 and ∂̄AΦ = 0, (1)

where Φ∗ is computed with respect to the Hermitian metric on E. The first
equation looks a bit different to what is often presented, namely

FA + [Φ,Φ∗] = iωµ

where ω is a Kähler form on X and µ is the slope of E, which in this case
is 1

2 deg(E). If A is a unitary connection then its curvature decomposes as

FA = F⊥A +
1

2
Tr(FA)⊗ IdE ,
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along with the Lie algebraic decomposition u(E) = su(E)⊕ iR. Notice that
1
2 Tr(FA) is precisely the curvature of the induced connection on detE. If we
require the induced connection on detE to be fixed we can remove this term
from the equations and end up with (1). We say that F⊥A is the trace-free
part of A relative the background connection A0.

We can form a moduli space of solutions to equations (1),

Mgauge
SL (d) = {(A0 + α,Φ) |Solutions of (1)}/Γ(SU(E)).

where SU(E) denotes the bundle of unitary endomorphisms of E with de-
terminant one and Γ(SU(E)) is the sections of this bundle, also called the
special unitary gauge group. The number d referes to the degree of the
bundle, which is fixed.

Since E is a Hermitian vector bundle a unitary connection A is equivalent
to ∂̄ a ∂̄-operator compatible with the Hermitian metric on E and thus the
pair (A,Φ) can be seen as a pair (∂̄,Φ). If the latter description is used there
is an algebro-geometric definition of a moduli space where the Higgs bundle
equations are replaced with a stability condition for a pair (∂̄,Φ) where Φ
is ∂̄-holomorphic

MSL(d) = {(∂̄,Φ) | (∂̄,Φ) is polystable, ∂̄ induce ∂̄detE ,Tr(Φ) = 0}/Γ(SL(E)).

Here SL(E) is the bundle of automorphisms of E with determinant one, and
Γ(SL(E)) is the sections, also called the special complex gauge group.

The key relation between the two moduli spaces is the following theorem
first proved by Hitchin in rank two, [H2], and shortly after by Simpson in
general, [S].

Theorem 1.1 (Hitchin/Simpson). Let E be a fixed Hermitian complex vec-
tor bundle. In the Γ(SL(E)) gauge orbit of the Higgs bundle (∂̄,Φ) there is
a ∂̄-operator whose associated Chern connection satisfies the Higgs bundle
equations (1) if and only if (∂̄,Φ) is polystable.

The theorem gives a diffeomorphism

MSL(d) 'Mgauge
SL (d).

The stable locus ofMSL(d) is smooth, open, dense, and carries a hyperkähler
structure which is complete when the degree is odd (in general it is when
the rank and degree are coprime). Understanding the asymptotic behaviour
of this metric towards infinity in the moduli space is the ultimate goal of
[MSWW1].

The space of ∂̄-operators is affine and modelled on A = Ω0,1(EndE). A
Higgs field is an element of Ω1,0(EndE) and an infinitesimal deformation is
therefore an element of Ā = Ω1,0(EndE). The Higgs bundle equations give
a set of equations cutting out a subspace of A×Ā defining the tangent space
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at a point (∂̄,Φ). The space A × Ā itself carries a natural Kähler metric
using the L2-metric induced by the Hermitian metric on E,

g((α,ϕ), (β, ψ)) = 2i

∫
X

Tr(α∗ ∧ β + ϕ ∧ ψ∗).

The moduli spaceMSL(d) has been intensely studied by many since Hitchin’s
landmark paper [H2] and quite a lot is known about the moduli space, e.g.
the topology. However, surprisingly little is known about the asymptotic be-
haviour of the hyperkähler metric towards infinity in the moduli space. The
motivation for the paper [MSWW1] is to provide more information about
the asymptotic behaviour of the metric. In the paper they give a construc-
tive proof of the Hitchin–Simpson theorem when the norm of the Higgs field
Φ is large and det Φ has simple zeros.

An important ingredient in their proof is the notion of a limiting configu-
ration, see Section 5. As the subset of the moduli space where Higgs fields are
simple is open and dense, it follows from their proof of the Hitchin–Simpson
theorem that the boundary of this open dense subset are the limiting config-
urations. The limiting configurations constitute a complex torus, and with
an insight of Hitchin, this torus is related to a Prym variety, see Section 9.1.

The implications for the hyperkähler metric from the new proof of the
Hitchin–Simpson theorem and the description of the "top boundary stra-
tum" are indications that the metric is semi-flat on the dense open set of
Higgs fields with simple zeros. Semi-flatness of the metric is part of a large
conjectural picture by Gaiotto, Moore and Neitzke [GMN1, GMN2]. The
semi-flatness refers to the Hitchin fibration MSL(d) → Q where Q is the
space of holomorphic quadratic differentials and the map is given by taking
the determinant of the Higgs field. The basic idea is that the metric on
the fibres of the fibration is flat. The ideas are not fully developed but in
[MSWW1], but in the review [MSWW2] the following idea is presented: A
family of limiting configurations (A∞(s),Φ∞(s)) associated to a curve of
holomorphic quadratic differentials q(s) can be perturbed (changing gauge)
to a family of solutions (A(s), tΦ(s)) of the Higgs bundle equations (1) with
t sufficiently large (see Section 7). In a suitable gauge the derivative of this
family with respect to s is a vertical tangent vector otMSL(d) with respect
to the Hitchin fibration. The hyperkähler metric can then be evaluated on
this tangent vector, and seen to be an exponentially small correction to
the vertical part of the semi-flat metric as t → ∞. The horizontal tangent
vectors can be obtained by varying the holomorphic quadratic differential
giving a comparison between the horizontal parts of the metric.

It should be noted that the full metric on MSL(d) is not semi-flat but
has correction terms coming from the fibres of the Hitchin fibration where
the determinant of the Higgs field has non-simple zeros.

The focus of this exposition will be on the actual content of [MSWW1],
that is the new proof of the Hitchin–Simpson theorem. We will not discuss
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the implications of the paper any further.

2 Exact solutions of the anti-self-dual equations
and dimensional reductions

The main content of [MSWW1] concerns constructing solutions of the Higgs
bundle equations. The Higgs bundle equations are reductions of the Anti-
Self-Duality (ASD) equations in four real dimensions to two. Before we go
into the details of how to construct solutions to the Higgs bundle equations,
let us go a bit back in time and see how exact solutions of the ASD equations
and its reduction to three dimensions were constructed.

2.1 Instantons

On a trivial bundle on R4 consider a connection A described by four skew
Hermitian matrices Ai(x) and covariant derivatives ∇i = ∂

∂xi
+ Ai(x). The

ASD equation is
∗ FA = −FA (2)

where ∗ is the Hodge-star operator. We are looking for solutions to (2) under
the boundary condition that the Yang–Mills action is finite∫

R4

‖FA‖2 = 8π2k +

∫
R4

‖FA + ∗FA‖2 <∞,

where k is an integer called the charge. Solutions to (2) are called instan-
tons. One way to construct instantons on R4 is by the ADHM-construction
[ADHM], but there are also other ways. If we want a charge 1 SU(2)-
instanton which is also SO(4)-invariant then

A = Im

(
xdx̄

1 + |x|2

)
,

where x = x0 + ix1 + jx2 + kx3 is a quaternion, is an instanton located at
0. If we take k such connections each centered at a different point, ai, and
the ai’s are sufficiently far apart then

A = A1 + · · ·+Ak

is an approximate solution to equation (2). To get an exact solution one can
use Taubes’ grafting construction, [T].

2.2 Monopoles

In three dimensions we consider connections on a flat bundle on R3. In
the same way as above we describe the connection in terms of three skew-
Hermitian matrices Ai(x) and now a Higgs field ϕ which is also skew-
Hermitian. The ASD equations reduce to three dimensions by requiring
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translation invariance in the fourth component. These new equations are
called monopole or Bogomolny equations

FA = ∗∇ϕ. (3)

The translation invariance essentially identifies A4 and ϕ. Again the bound-
ary condition is a requirement for finite Yang–Mills action∫

R3

‖FA‖2 + ‖∇ϕ‖2 = 4πk +

∫
R3

‖FA − ∗∇ϕ‖ <∞

where k is an integer called the charge. Hitchin constructed the moduli space
of monopoles, [H1], but if we again look for a charge 1 SU(2)-monopole which
is also SO(3) invariant then

A =

(
1

sinh r
− 1

r

)
1

r
x× dx and ϕ =

(
1

tanh r
− 1

r

)
1

r
x,

where x = ix1 + jx2 + kx3, is a solution centered at 0. Again we can take
k copies of this solution located at points ai sufficiently far apart giving an
approximate monopole

A = A1 + · · ·+Ak.

We can again use Taubes’ grafting procedure to obtain an exact solution,
[JT].

2.3 Higgs bundles

The Higgs bundle equations on R2 are (like the monopole equations) di-
mensional reductions of the ASD equations by requiring solutions to be
translation invariant in two directions. The connection matrices in these
directions, say A3, A4, are turned into Higgs fields ϕ1, ϕ2 which define the
usual Higgs field Φ = 1

2(ϕ1 + iϕ2)dz, and the equations are

FA + [Φ,Φ∗] = 0 and ∂̄AΦ = 0.

The boundary condition of finite Yang–Mills action from the previous two
cases is vacuous as the Yang–Mills functional is∫

R2

‖FA + [Φ,Φ∗]‖2 <∞

with a minimum value of zero. In physics terms the connections with min-
imal action are, according to the minimal action principle, the physically
interesting ones. From the action functional one derives the Euler–Lagrange
equations giving the equations of motion in this physical theory. But as the
minimum is zero the paths in this physical theory are just constants. This
is the reason why physicists initially disregarded these equations, because
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there were not any immediately interesting physics, [L], now we of course
know that Higgs bundles are indeed physically very interesting albeit in a
physical theory which did not exist until 2007 with Kapustin and Witten,
[KW].

If we look for SU(2)-Higgs bundles with extra SO(2)-symmetry they
can be seen as solutions to the ASD equation invariant under SO(2) × R2.
Such solutions can be found by essentially solving the Painlevé III equation,
[MW],

(x∂x)2ψ =
1

2
x2 sinh(2ψ). (4)

As the Higgs bundle equations have the nice property of being confor-
mally invariant they can be defined on a compact Riemann surface. We
cannot immediately pursue the same strategy as above by taking local solu-
tions positioned sufficiently far apart by the compactness. Nevertheless this
is roughly what is done in [MSWW1] where the problem of compactness is
overcome by requiring the Higgs field to have sufficiently large L2-norm.

3 Main theorem

The main result in [MSWW1] is a constructive proof of the Hitchin–Simpson
theorem for a certain class of Higgs bundles.

Theorem 3.1. Let E be a fixed complex vector bundle of rank two with a
fixed holomorphic structure on detE, and assume (∂̄,Φ) is a Higgs bundle
with det Φ having simple zeros. Then there is a Hermitian metric on E such
that when t is sufficiently large there is a solution (At,Φt) to

F⊥A + t2[Φ,Φ∗] = 0 and ∂̄AΦ = 0

in the Γ(SL(E))-gauge orbit of (A, tΦ) where A is the Chern connection of
∂̄.

If we compare this formulation to Theorem 1.1 the polystability is re-
placed by det Φ having simple zeros as this implies stability of (∂̄,Φ) when
the rank of E is two.

3.1 Strategy for the proof

The proof consists of several parts and in this section we will give a brief
overview of the structure of the proof and the strategy chosen.

1. A limiting configuration is a singular pair (A∞,Φ∞) of a unitary con-
nection and a Higgs field both with standardized behaviour at the
singularities, D, solving a decoupled version of the Higgs bundle equa-
tions away from D, i.e. F (A∞) = 0 and [Φ∞,Φ

∗
∞] = 0, see Section 5

for the definition.
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2. For (∂̄,Φ) a rank two Higgs bundle of odd degree with det Φ having
simple zeros, D, there is a Hermitian metric H such that (A,Φ) is
complex gauge equivalent on X× = X \D to a limiting configuration
where A is the Chern connection.

3. Construct a local family of smooth SO(2)-invariant solutions to the
Higgs bundle equations converging to the singular behaviour defined
by the limiting configurations.

4. Glue this family to the limiting configuration to obtain an approximate
solution to the Higgs bundle equations on all of X.

5. Perturb the approximate solutions to obtain an exact solution which
is complex gauge equivalent to the pair we started with.

The constructive aspect of this strategy will give control of the shapes of
the solutions and the gauge transformations. This is important to determine
the asymptotics of the L2-metric on the moduli space.

4 Local solutions

In this section we construct local model solutions on R2 called fiducial solu-
tions. First let us consider a singular limiting fiducial solution (Afid

∞ ,Φ
fid
∞ ).

Let B be an open disk centered at 0 and denote B× = B \ {0}. Let E
be a complex vector bundle on B and fix a Hermitian metric on E. Choose
a unitary frame trivialising E on B×. In this frame define

Afid
∞ =

1

8

(
1 0
0 −1

)(
dz

z
− dz̄

z̄

)
and Φfid

∞ =

(
0 r1/2

r1/2eiθ 0

)
dz

where Φfid
∞ is specified in polar coordinates. Notice that the connection Afid

∞
is singular at 0; Φfid

∞ is continuous at 0 and otherwise smooth; Φfid
∞ is normal

and det Φfid
∞ = −zdz2 has a simple zero.

Lemma 4.1. The connection Afid
∞ is flat on B× and Φfid

∞ is holomorphic
with respect to Afid

∞ , so especially they satisfy the Higgs bundle equations on
B×.

Secondly we construct a family of smooth solutions on B to

0 = Ht(A,Φ) = (FA + t2[Φ,Φ∗], ∂̄AΦ) t > 0 (5)

which converge to (Afid
∞ ,Φ

fid
∞ ) as t→∞.

Lemma 4.2. The pair (Afid
t ,Φ

fid
t ) defined by

Afid
t = ft(r)

(
1 0
0 −1

)(
dz

z
−dz̄
z̄

)
and Φfid

t =

(
0 r1/2eht(r)

r1/2eiθe−ht(r)

)
dz
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solves (5) where

ft(r) =
1

8
+

1

4
r∂rht and ht(r) = ψ

(
8

3
tr3/2

)
with ψ a solution to the Painlevé III equation (4).

It turns out that if we want exponential decay of ψ and the right be-
haviour at 0 then there is a unique solution to (4). As we argued in Sec-
tion 2.3 the Painlevé III equation had to enter the picture somewhere, and
this is how.

Lemma 4.3. The pair (Afid
t ,Φ

fid
t ) is smooth at 0 and converge exponentially

in t, uniformly in C∞ on any exterior region r ≥ r0 > 0 to (Afid
∞ ,Φ

fid
∞ ).

In the frame fixed above define

A0 = 0 and Φ0 =

(
0 1
z 0

)
dz.

Lemma 4.4. For every t > 0 the pair (Afid
t ,Φ

fid
t ) is complex gauge equivalent

to (A0,Φ0) on B. The limiting fiducial pair (Afid
∞ ,Φ

fid
∞ ) is complex gauge

equivalent using a singular gauge transformation to (A0,Φ0) on B×.

5 Limiting configuration

As mentioned in Section 3.1 the first part of the proof is to find a so-called
limiting configuration which is complex gauge equivalent on X× to an initial
pair (A,Φ).

Definition 5.1. Let E be a Hermitian complex vector bundle on X and
D = p1+· · ·+p4g−4. A limiting configuration is a Higgs pair on X× = X\D,
(A∞,Φ∞) satisfying the decoupled Higgs bundle equations

F⊥A∞ = 0 [Φ∞,Φ
∗
∞] = 0 ∂̄A∞Φ∞ = 0

and which agrees with (Afid
∞ ,Φ

fid
∞ ) near each point of D with respect to some

holomorphic coordinate system and unitary frame for E.

The trace-free condition on the curvature of A∞ is because we require
the induced connection on detE to be fixed.

The main theorem about limiting configurations is the following.

Theorem 5.2. Let (∂̄,Φ) be a Higgs bundle of rank two, odd degree, and
with simple zeros of det Φ. Then there is a Hermitian metric so that if A
is the associated Chern connection then the pair (A,Φ) is complex gauge
equivalent on X× to a limiting configuration (A∞,Φ∞).
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There is essentially two steps in the proof of Theorem 5.2:

1. Make Φ normal away from D.

2. Flatten A away from D without changing the normality property of
Φ.

5.1 Normal form for Higgs bundles

First let us mention a convenient lemma.

Lemma 5.3. In a neighbourhood of any simple zero of det Φ there is a
complex coordinate z and a local holomorphic frame of E such that

Φ =

(
0 1
z 0

)
dz.

If (∂̄,Φ) is a Higgs bundle with simple Higgs field then in the neigh-
bourhood and frame from Lemma 5.3 we define a Hermitian metric H0 by
declaring this frame to be unitary. We do this for every point of D and
finally extend H0 arbitrarily to the rest of X. Notice that if A is the Chern
connection of (H0, ∂̄) then A vanish on the neighbourhoods and in the frames
fixed from Lemma 5.3.

From Lemma 4.4 we can find a local singular complex gauge transform
changing (A,Φ) around the points in D to fiducial limiting solutions. It
is actually possible, [MSWW1, Lemma 4.3], to extend these local complex
gauge transforms to complex gauge tranforms defined on X×. That is, there
is a g ∈ Γ(X×,SL(E)) such that Φg = g−1Φg is normal on X×.

5.2 Remove trace-free part of curvature

In this section we will discuss how to gauge away the trace-free part of
the curvature without changing the normal-form of Φ. We want to find
g ∈ Γ(X×, SL(E)) such that

F⊥Ag = 0 and g−1Φg = Φ.

We therefore define the holomorphic line bundle

LC
Φ = {γ ∈ sl(E) | [γ,Φ] = 0}

of infinitesimal stabilisers of Φ and consider the real line bundles LΦ =
LC

Φ∩su(E), iLΦ of skew-Hermitian and Hermitian elements. If we then take
g = exp(γ) with γ ∈ iLΦ then changing gauge with g does not change the
normal form of Φ. We then want to solve

0 = F⊥Ag = g−1(F⊥A + ∂̄A(gg∗∂A(gg∗)−1))g = g−1(F⊥A − 2∂̄A∂Aγ)g,
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where the last equality follows as γ is Hermitian. Solving this equation is
equivalent to solving the Poisson equation

∆Aγ = iΛF⊥A

where Λ is contraction with a chosen Kähler form on X.
The theorem is proved if we can find a solution to the Poisson equation.

The problem is however that A has a simple pole at the zeros of det Φ and
even though ∆A is an elliptic operator we cannot just use standard theory
to solve this equation. Because of the singularity we have to use weighted
Sobolev spaces and appeal to the theory of conical elliptic operators. As this
is just an exposition of the ideas of the paper we won’t go into the details
needed to solve the Poisson equation.

The proof of Theorem 5.2 is strictly gauge theoretic. There is however
a different proof, suggested by Hitchin, which is completely geometric. The
proof involves spectral data for (∂̄,Φ) and will be the topic of Section 9.

6 Approximate solutions

Now that we have a gauge transform g∞ taking the initial pair (A,Φ) to a
limiting configuration (A∞,Φ∞) on X×, we want to smoothen this at the
points of D to get a family of Higgs pairs converging to (A∞,Φ∞) which are
defined on X and are approximate solutions to the Higgs bundle equations.

Define Xint = ∪p∈DB×1 (p) and Xext = X \ X̄int and assume the limit-
ing configuration is fiducial on Xint. Define furthermore a complex gauge
transformation gt = exp(γt) where

γt =

(
−1

2ht 0
0 1

2ht

)
where ht are the solutions to the Painlevé III equation as in Lemma 4.2.
Then by definition on Xint we have

(Afid
t ,Φ

fid
t ) = (Afid

∞ ,Φ
fid
∞ )gt .

Choose a smooth cut-off function χ : X → [0, 1] with support in Xint

and being constant 1 on ∪p∈DB 1
2
(p), then the gauge transformation gapp

t =

exp(χγt) is a family of smooth complex gauge transformations on X with
gapp
t = gt on ∪p∈DB 1

2
(p) and gapp

t = Id on Xext. Using this gauge transform
we "glue in" the smooth fiducial solutions to the limiting configuration in a
small neighbourhood of the points of D.

To summarise: If (A,D) is the initial pair, then we use a complex gauge
transform g∞ on X× to change to a limiting configuration (A∞,Φ∞) and
then gapp

t to get the pair (Aapp
t ,Φapp

t ). A priori the last pair is only defined
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on X×, but by considering the local behaviour of g∞g
app
t at p ∈ D it turns

out that (A,Φ) is complex gauge equivalent to (Aapp
t ,Φapp

t ) on X.
The pair (Aapp

t ,Φapp
t ) is an approximate solution to the rescaled Higgs

bundle equations in the sense that there are constants C, δ > 0 independent
of t, such that for t� 1

‖F⊥Aapp
t

+ t2[Φapp
t , (Φapp

t )∗]‖L2 ≤ Ce−δt.

To obtain an exact solution when t is large, we have to perturb this
solution slightly. We perturb by once again changing the gauge.

7 Perturbation to exact solutions

We again gauge by exp(γ) where γ is a section of iLΦ. This means that we
want to solve

0 = F⊥
(Aapp
t )exp(γ)

+ t2[(Φapp
t )exp(γ), ((Φapp

t )exp(γ))∗]

= F⊥Aapp
t

+ t2[Φapp
t , (Φapp

t )∗] + Ltγ +Qtγ, (6)

where

Ltγ = ∆Aapp
t
γ + t2MΦapp

t
γ and Mϕγ = 2([ϕ∗, [ϕ, γ]] + [ϕ, [ϕ∗, γ]])

and Qtγ being the remaning terms.
If we set up the problem correctly and use the right Sobolev spaces the

operator Lt is invertible. Then we have a solution to (6) if and only if

γ = −L−1
t (F⊥Aapp

t
+ t2[Φapp

t , (Φapp
t )∗] +Qtγ) = T (γ)

that is if and only if γ is a fixed point of T .
To find a fixed point it is enough to prove that T is a contraction mapping

of a ball into itself. This will follow if we have the proper estimates on the
operator norm of L−1

t and Qt. This is a quite technical part of the paper
and we refer the interested reader to Section 6 in [MSWW1] for the details.

8 Summary

What did we actually prove? If E is a complex vector bundle of rank two
and (∂̄,Φ) a Higgs bundle structure on E with det Φ having only simple
zeros, then we gave a construction of a Hermitian metric suited to the Higgs
field Φ and with this Hermitian metric fixed we constructed (for t sufficiently
large) a gauge transform gt, such that if A is the Chern connection, then
(At,Φt) = (A,Φ)gt is a solution to

∂̄AtΦt = 0 and F⊥At + t2[Φt,Φ
∗
t ] = 0.

This is the difficult direction in Theorem 1.1.
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9 Alternative construction of limiting configura-
tions

Essential to the proof is the construction of limiting configurations. The
presentation in this note and in Section 4 of [MSWW1] is analytically very
heavy. As it turns out limiting configurations are actually rather natural ob-
jects to study as the following alternative construction proposed by Hitchin
suggests.

Since we require the Higgs bundles to have fixed holomorphic structure
on detE we will just focus on the SL(2,C) case for simplicity. The construc-
tion works for the odd degree cases as well.

Let q ∈ H0(Σ,K2) have simple zeros, and let π : S → X be the 2 : 1-
covering of X branched at the 4g − 4 zeros of q defined by the square root
of q (i.e. S is the curve in the total space of the canonical bundle defined
by the equation η2 = q where η is the tautological section of the canonical
bundle pulled back along itself). Finally let σ : S → S be the involution
permuting the sheets.

Proposition 9.1. Let U be a line bundle on S with the property that σ∗U⊗
U ' π∗(K) then there is a Hermitian metric on the holomorphic vector
bundle

E = π∗(U ⊕ σ∗U)σ

such that the Chern connection and the Higgs field

π∗

(√
q 0

0 −√q

)
is a limiting configuration on Σ with singularities at the zeros of q.

Proof. Let L be a flat line bundle on S with the property that σ∗L ' L∗

(i.e. L is in the Prym-variety of S). Then L⊕L∗ is a flat σ-invariant bundle.
Then the push forward of the σ-invariant sections of L ⊕ L∗ is a rank two
holomorphic vector bundle on Σ with determinant K−1. Moreover E has a
Hermitian metric with a certain behaviour at the zeros of q. The Hermitian
metric comes as part of a parabolic structure on E supported at the zeros of
q. At each of the zeros of q there is a full flag of the fibre of E with weights
0 and 1

2 . Therefore the Hermitian metric behaves as(
1 0
0 r

)
at the zeros of q. Furthermore as L⊕L∗ is flat, the Chern connection on E
is flat as well – but only away from the branch points.

The Hermitian metric of a limiting configuration behaves as(
r−1/2 0

0 r1/2

)
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at the zeros of q which is different to the behaviour of the parabolic metric.
We also need detE ' O. If L is twisted by π∗(K1/2) where K1/2 is a

chosen square root of K, then

π∗(L⊗ π∗K1/2 ⊕ σ∗(L⊗ π∗K1/2))σ = π∗((L⊕ L∗)⊗ π∗K1/2)σ = E ⊗K1/2.

Certainly det(E ⊗K1/2) ' O and to get a Hermitian metric on E ⊗K1/2

we can twist the parabolic metric on E by a section of K−1/2 ⊗ K̄−1/2. As
q is a quadratic differential (qq̄)−1/4 is exactly such a section. If h is the
parabolic metric on E then as q has only simple zeros the behaviour at the
branch points is

h(qq̄)−1/4 ∼
(
r−1/2 0

0 r1/2

)
.

We can therefore obtain the bundle and connection of a limiting configu-
ration by considering the push forward of the σ-invariant sections of a line
bundle U = L⊗ π∗K1/2 satisfying

σ∗U = σ∗(L⊗ π∗K1/2) = L∗ ⊗ π∗K1/2 = U∗ ⊗ π∗K.

To get a limiting configuration we need a Higgs field which is normal
away from the branch points. The square root α =

√
q is a well defined

holomorphic differential on S, α ∈ H0(S,KS). The homomorphism

ϕ =

(
α 0
0 −α

)
: L⊕ L∗ → (L⊕ L∗)⊗KS

is normal on S and as it is σ-invariant it thus induces a Higgs field Φ′ on E
normal away from the branch points.

9.1 Limiting configuration associated to a Higgs bundle

Let (V,Φ) be an SL(2,C)-Higgs bundle, i.e. detV ' O and Tr Φ = 0.
Assume furthermore that −q = det Φ ∈ H0(K2) has simple zeros, D =
p1 + · · ·+ p4g−4.

Proposition 9.2. A limiting configuration for (V,Φ) as above is (E,Φ′)
with

E = π∗(U ⊕ σ∗U)σ and Φ′ = π∗

(√
q 0

0 −√q

)
where π : S → Σ is the spectral curve of (V,Φ) and U is a line bundle sat-
isfying π∗U = V and E is equipped with the Hermitian metric from Propo-
sition 9.1.

Proof. The spectral curve S for (V,Φ) is the 2 : 1 branched cover of Σ
defined by q. Let σ : S → S be the involution changing the sheets of the
covering.
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Pulling back V Φ−→ V ⊗K to S gives the following exact sequence

0→ U ⊗ π∗K−1 → π∗V
η−Φ−−−→ π∗(V ⊗K)→ U ⊗ π∗K → 0,

where U is a line bundle such that π∗U = V . By considering the norm map,
it follows that

σ∗U ' U∗ ⊗ π∗K.

From Proposition 9.1 we get a limiting configuration, (E,Φ′), on Σ with
the required properties. A gauge transformation between (V,Φ) and (E,Φ′)
exists as on S, ±√q are the eigenvalues of π∗Φ on S \ π∗D and the flat
bundle L⊕ L∗ on S \ π∗D is an eigenspace decomposition of V .

This gives a different proof to Theorem 4.1 of [MSWW1].
It is interesting to see parabolic Higgs bundles find their way into the

description of the hyperkähler metric on the moduli space of ordinary Higgs
bundles. It would be interesting to see if their presence could be more
actively used in the investigation of asymptotical properties of the metric.
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