MAXIMAL REPRESENTATIONS - FRAGMENTS OF SOLUTIONS

THOMAS HAETTEL

2. Topology of $Homeo^+(S^1)$

17. Consider the map

$$\tilde{G} \times [0,1] \rightarrow \tilde{G}$$

 $(f,t) \mapsto (x \mapsto tx + (1-t)f(x)),$

it is well defined according to question 16. It is a continuous retraction from \tilde{G} onto $\{id_{\mathbf{R}}\}$, hence \tilde{G} is contractible.

21. According to the polar decomposition, $PSL(2, \mathbf{R})$ deformation retracts onto PSO(S), hence $\pi_1 PSL(2, \mathbf{R}) \simeq \mathbf{Z}$.

The unique connected k-cover $PSL(2, \mathbf{R})_{(k)}$ of $PSL(2, \mathbf{R})$ comes from the unique subgroup of $\pi_1 PSL(2, \mathbf{R}) \simeq \mathbf{Z}$ of index k, namely $k\mathbf{Z}$.

If we consider the connected k-cover of the circle $p_k: S^1 \to S^1$ (the multiplication by k), then $\mathrm{PSL}(2,\mathbf{R})_{(k)}$ can be thought of as the group of all lifts of elements of $\mathrm{PSL}(2,\mathbf{R}) \subset \tilde{G}$ under p_k . Or if we denote by r_k the rotation of S^1 of order k, then $\mathrm{PSL}(2,\mathbf{R})_{(k)}$ can be realized as the subgroup of $\mathrm{PSL}(2,\mathbf{R})$ which commutes with r_k . These subgroups are not conjugated in $\mathrm{Homeo}^+(S^1)$ as the center of $\mathrm{PSL}(2,\mathbf{R})_{(k)}$ has order k.

- **23**. Lemma about \underline{m} and \overline{m} stated in the first lecture.
 - $0 \le \overline{m}(f) \underline{m}(f)$ is immediate. Adding to f a real constant does not change the quantity $\overline{m}(f) \underline{m}(f)$, so we may assume f(0) = 0. Let $x, y \in [0, 1)$ such that $\overline{m}(f) = f(x) x$ and $\underline{m}(f) = f(y) y$. Then if $y \le x$, $f(y) y \ge -x$ so $\overline{m}(f) \underline{m}(f) \le f(x) < 1$; and if $y \ge x$, f(y) y > f(x) 1 so $\overline{m}(f) \underline{m}(f) < 1 x \le 1$.
 - $\bullet \ \underline{m}(f^{-1}) = \min\{f^{-1}(f(y)) f(y) | x = f(y) \in \mathbf{R}\} = -\overline{m}(f).$
 - Assume that $\underline{m}[f,g] \geq 1$, that is $\forall x \in \mathbf{R}, fgf^{-1}g^{-1}(x) x \geq 1$. Hence $\forall x \in \mathbf{R}, f(g(x)) \geq g(f(x)) + 1$. Up to adding an integer to f, we may assume that $\underline{m}(f) \in [0,1)$: in particular $\forall x \in \mathbf{R}, f(x) \geq x$ so $f(g(x)) \geq g(x) + 1$, hence $\forall y \in \mathbf{R}, f(y)_y \geq 1$ so $\underline{m}(f) \geq 1$: contradiction. So $\underline{m}[f,g] < 1$.

4. Maximal Representations

31. If $\tau:G\to H$ is a morphism of topological groups, then $I_H(\tau\circ\rho)=\tau_*(I_G(\rho))$, where $\tau_*:\pi_1G\to\pi_1H$ is the induced morphism. In this case, we just need to show that $\tau_*:\pi_1\mathrm{SL}(2,\mathbf{R})\simeq\mathbf{Z}\to\pi_1\mathrm{Sp}(2n,\mathbf{R})\simeq\mathbf{Z}$ is the multiplication by n. A generator of $\pi_1\mathrm{SL}(2,\mathbf{R})$ is the classe of the loop $c:\theta\in[0,2\pi]\mapsto\begin{pmatrix}\cos\theta-\sin\theta\\\sin\theta\cos\theta\end{pmatrix}$, and its image under τ is $\tau\circ c:\theta\in[0,2\pi]\mapsto\begin{pmatrix}\cos\theta I_n-\sin\theta I_n\\\sin\theta I_n&\cos\theta I_n\end{pmatrix}$. But one generator of $\pi_1\mathrm{Sp}(2n,\mathbf{R})$ is the class of the loop $c':\theta\in[0,2\pi]\mapsto\begin{pmatrix}\cos\theta I_{n-1}&0&I_{n-1}\\\sin\theta I_n&\cos\theta I_{n-1}&0&I_{n-1}\\\sin\theta I_{n-1}&0&I_{n-1}\end{pmatrix}$, so the homotopy class of $\tau\circ c$ is n times the homotopty class of c'. Hence τ_* is the multiplication by n.

Note that a representation in $SL(2, \mathbf{R})$ is maximal if its Euler number is g - 1. And when we look at representations in $PSL(2, \mathbf{R})$, then the maximal value is 2g - 2, since $SL(2, \mathbf{R})$ is the connected 2-cover of $PSL(2, \mathbf{R})$.

32. τ is defined as follows. Consider the vector space V of homogeneous polynomials in X, Y of degree 2n-1. The canonical basis is $X^{2n-1}, X^{2n-2}Y, \ldots, Y^{2n-1}$. SL(2, R) acts on V by the following: if $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then $g.X^pY^q = (aX + bY)^p(cX + dY)^q$. This defines an irreducible representation τ of $SL(2, \mathbf{R})$ in $GL(V) = GL(2n, \mathbf{R})$.

Consider the following symplectic form ω on V: if $(p,q) \neq (q',p')$, then $\omega(X^pY^q,X^{p'}Y^{q'}) = 0$. And $\omega(X^pY^q,X^qY^p) = 1$ if p > q, and -1 if p < q. The matrix of ω in the canonical basis is the canonical matrix $\begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$.

It is clear that ω is invariant under diagonal and triangular matrices in $SL(2, \mathbf{R})$, hence ω is $SL(2, \mathbf{R})$ -invariant.

Hence $\tau(\mathrm{SL}(2,\mathbf{R})) \subset \mathrm{Sp}(2n,\mathbf{R})$.

For $\theta \in \mathbf{R}$, denote $r_{\theta} \in \mathrm{SL}(2, \mathbf{R})$ the rotation of angle θ . Then we have $r_{\theta} \cdot X + iY = e^{i\theta}(X+iY)$ and $r_{\theta} \cdot X - iY = e^{-i\theta}(X-iY)$. Hence the complex eigenvectors of the action of r_{θ} on the complexified vector space $V \otimes \mathbf{C}$ are, for all $p \in [0, 2n-1]$:

$$r_{\theta} \cdot (X+iY)^{p}(X-iY)^{2n-1-p} = e^{i(2p-2n+1)\theta}(X+iY)^{p}(X-iY)^{2n-1-p}.$$

When we now consider the n invariant real 2-planes, they are, for all $p \in [0, n-1]$, spanned by the real and imaginary parts of $Z_p = (X + iY)^p (X - iY)^{2n-1-p}$. But we remark that the sign of $\omega(ReZ_p, ImZ_p)$ is the same as $(-1)^{p+1}$: the orientation of the loops alternate. Hence the image by τ of the standard loop c of $SL(2, \mathbf{R})$ is composed of n loops of total angles $(-1)^{p+1}(2p-2n+1)$. Hence τ_* is equal to the multiplication by

$$\sum_{p=0}^{n} (-1)^{p+1} (2p - 2n + 1) = n.$$

So, as in the previous exercise, we get that $\tau \circ \rho$ is maximal.