GEAR 2012: Introduction to (G, X)-structures Problem Set 1 K. Melnick

- 1. Let X be a manifold, and suppose Γ acts on X properly discontinuously. Show that the quotient space $\Gamma \setminus X$ is Hausdorff.
- **2.** Assume $g \in GL(n, \mathbf{R})$ is semisimple (diagonalizable over \mathbf{C}). Show that $\langle g \rangle$ acts freely and properly discontinuously on $\mathbf{R}^n \setminus \{0\}$ if and only if the eigenvalues $\lambda_1, \ldots, \lambda_n$ satisfy $|\lambda_i| > 1 \ \forall i$ or $|\lambda_i| < 1 \ \forall i$.
- **3.** Show that if $\gamma:[0,1]\to M$ is a null homotopic loop, say at x_0 , then development along γ has the same value at t=1 as at t=0. Hint:

- **4.** What are all similarity structures on S^1 ? Which are complete?
- **5.** Show that an affine manifold M is geodesically complete if and only if it is complete as a (G, X)-manifold.