
Representations of hyperbolic 3-manifold groups
in PSL(2,R)

Kathryn Mann

University of Chicago

July 27, 2012



Basic Objects

Γ discrete group. G Lie group.

Representation Variety Hom(Γ,G )

Character Variety X (Γ,G ) := Hom(Γ,G )//G

“Deformation spaces of geometric structures”



Basic Objects

Γ discrete group. G Lie group.

Representation Variety Hom(Γ,G )

Character Variety X (Γ,G ) := Hom(Γ,G )//G

“Deformation spaces of geometric structures”



Basic Objects

Γ discrete group. G Lie group.

Representation Variety Hom(Γ,G )

Character Variety X (Γ,G ) := Hom(Γ,G )//G

“Deformation spaces of geometric structures”



Basic Objects

Γ discrete group. G Lie group.

Representation Variety Hom(Γ,G )

Character Variety X (Γ,G ) := Hom(Γ,G )//G

“Deformation spaces of geometric structures”



Basic Objects

Γ discrete group. G Lie group.

Representation Variety Hom(Γ,G )

Character Variety X (Γ,G ) := Hom(Γ,G )//G

“Deformation spaces of geometric structures”



X (π1(M
3),PSL(2,R))

Most of us are familiar with X (π1(Σ),PSL(2,R)).

Why look at PSL(2,R) reps of hyperbolic 3-manifolds?

1. Arithmetic invariants

2. Dynamics on X (π1(Σ),PSL(2,R))

3. Geometry of foliations

4. ...
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An Example

Let Γ ⊂ SL(2,C)
Think Γ = lift of Kleinian group π1(M3) ⊂ PSL(2,C).

Fact
The trace field of Γ is a number field

trace field = Q(trΓ)

Fact
Some conjugate gΓg−1 has all matrix entries in a number field K
(K is a degree 2 extension of Q(trΓ)).
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Suppose ∃ a real place σ : K → σ(K ) ⊂ R

(
a b
c d

)
7→

(
σ(a) σ(b)
σ(c) σ(d)

)
Γ ↪→ SL(2,R)
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1. Arithmetic Invariants

Question
Which number fields K arise as trace fields of hyperbolic
manifolds?

Conjecture (Neumann, Reid)

Every non-real concrete number field arises.

Question
Which hyperbolic manifolds M3 have trace fields with a real place?

Theorem (Calegari)

If M3 fibers with fiber = once punctured torus, then no real place.
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Question
What do real place reps “look like” in X (π1(M3),SL(2,R))?
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Mod(Σ) acts naturally on X (π1(Σ),PSL(2,R))

For φ ∈ Mod(Σ),
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Mod(Σ) acts properly on the Teichmuller component of X .
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What about other components?

Dynamics are only understood when Σ = once punctured torus.

Question
What about the dynamics of a single φ?

e.g. fixed points for φ?
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Fixed points for φ

Fixed point for φ on X (π1(Σ),G )

↔ representation π1(M3
φ)→ G

M3
φ = mapping torus of φ.

π1(M3
φ) = 〈π1(Σ),T |TγT−1 = φ(γ)〉

ρ ∈ X (π1(Σ),G ) fixed by φ means

ρ(φ(γ)) = t ρ(γ) t−1

t ↔ ρ(T )
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Describing the fixed set of φ

Question
What is the dimension of fix(φ)?
Are there isolated fixed points? Interesting families?

Proposition

If Σ is closed and M3
φ has a real place, then this gives an isolated

fixed point for φ acting on X (π1(Σ),PSL(2,R))

If Σ has n boundary components and M3
φ has a real place, then

this real place belongs to a n-dimensional component of fix(φ).

Question
Describe the dynamics of φ near a fixed point.
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Definition
A transversely real projective codimension 1 foliation on a manifold
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The holonomy of this foliation is a map π1(M)→ PSL(2,R)
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Seifert Volume

A transversely projective foliation on M3 gives M a Seifert volume
[Definition of Brooks - Goldman]

There are examples of hyperbolic M3 with nonzero Seifert volume.

Question
Which hyperbolic manifolds have non-zero Seifert volume? What
is the volume associated to a given ρ : π1(M3)→ PSL(2,R)?
Given M3, what is the set of all Seifert volumes of all holonomy
representations?
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