Representations of hyperbolic 3-manifold groups in PSL(2,R)

Kathryn Mann

University of Chicago

July 27, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

 Γ discrete group. *G* Lie group.

 Γ discrete group. *G* Lie group.

Representation Variety $Hom(\Gamma, G)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 Γ discrete group. *G* Lie group.

Representation Variety $Hom(\Gamma, G)$

Character Variety $X(\Gamma, G) := \operatorname{Hom}(\Gamma, G) /\!\!/ G$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 Γ discrete group. *G* Lie group.

Representation Variety $Hom(\Gamma, G)$

Character Variety $X(\Gamma, G) := \operatorname{Hom}(\Gamma, G) /\!\!/ G$

"Deformation spaces of geometric structures"

▲□▶▲圖▶▲≣▶▲≣▶ ■ めんの

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Most of us are familiar with $X(\pi_1(\Sigma), \mathsf{PSL}(2, \mathbb{R}))$.

Most of us are familiar with $X(\pi_1(\Sigma), \mathsf{PSL}(2, \mathbb{R}))$.

Most of us are familiar with $X(\pi_1(\Sigma), \mathsf{PSL}(2, \mathbb{R}))$.

Why look at $PSL(2, \mathbb{R})$ reps of hyperbolic 3-manifolds?

1. Arithmetic invariants

Most of us are familiar with $X(\pi_1(\Sigma), \mathsf{PSL}(2, \mathbb{R}))$.

- 1. Arithmetic invariants
- 2. Dynamics on $X(\pi_1(\Sigma), \mathsf{PSL}(2,\mathbb{R}))$

Most of us are familiar with $X(\pi_1(\Sigma), \mathsf{PSL}(2, \mathbb{R}))$.

- 1. Arithmetic invariants
- 2. Dynamics on $X(\pi_1(\Sigma), \mathsf{PSL}(2,\mathbb{R}))$
- 3. Geometry of foliations

Most of us are familiar with $X(\pi_1(\Sigma), \mathsf{PSL}(2, \mathbb{R}))$.

- 1. Arithmetic invariants
- 2. Dynamics on $X(\pi_1(\Sigma), \mathsf{PSL}(2,\mathbb{R}))$
- 3. Geometry of foliations
- 4. ...

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 め�?

Let $\Gamma \subset SL(2,\mathbb{C})$

Let $\Gamma \subset SL(2, \mathbb{C})$ Think $\Gamma = \text{lift of Kleinian group } \pi_1(M^3) \subset PSL(2, \mathbb{C}).$

Let $\Gamma \subset SL(2, \mathbb{C})$ Think $\Gamma = \text{lift of Kleinian group } \pi_1(M^3) \subset PSL(2, \mathbb{C}).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fact

The trace field of Γ is a number field

Let $\Gamma \subset SL(2, \mathbb{C})$ Think $\Gamma = \text{lift of Kleinian group } \pi_1(M^3) \subset PSL(2, \mathbb{C}).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fact The trace field of Γ is a number field trace field = $\mathbb{Q}(tr\Gamma)$

Let $\Gamma \subset SL(2, \mathbb{C})$ Think $\Gamma = \text{lift of Kleinian group } \pi_1(M^3) \subset PSL(2, \mathbb{C}).$

Fact The trace field of Γ is a number field trace field = $\mathbb{Q}(tr\Gamma)$

Fact

Some conjugate $g \Gamma g^{-1}$ has all matrix entries in a number field K (K is a degree 2 extension of $\mathbb{Q}(tr\Gamma)$).

Suppose \exists a real place $\sigma: K \to \sigma(K) \subset \mathbb{R}$

Suppose \exists a real place $\sigma: K \to \sigma(K) \subset \mathbb{R}$

$$\left(\begin{array}{c} a & b \\ c & d \end{array}\right) \mapsto \left(\begin{array}{c} \sigma(a) & \sigma(b) \\ \sigma(c) & \sigma(d) \end{array}\right)$$

$$\Gamma \hookrightarrow \mathsf{SL}(2,\mathbb{R})$$

Question

Which number fields K arise as trace fields of hyperbolic manifolds?

Question

Which number fields K arise as trace fields of hyperbolic manifolds?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conjecture (Neumann, Reid)

Every non-real concrete number field arises.

Question

Which number fields K arise as trace fields of hyperbolic manifolds?

Conjecture (Neumann, Reid)

Every non-real concrete number field arises.

Question

Which hyperbolic manifolds M^3 have trace fields with a real place?

Question

Which number fields K arise as trace fields of hyperbolic manifolds?

Conjecture (Neumann, Reid)

Every non-real concrete number field arises.

Question

Which hyperbolic manifolds M^3 have trace fields with a real place?

Theorem (Calegari)

If M^3 fibers with fiber = once punctured torus, then no real place.

Question What do real place reps "look like" in $X(\pi_1(M^3), SL(2, \mathbb{R}))$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\mathsf{Mod}(\Sigma)$ acts naturally on $X(\pi_1(\Sigma),\mathsf{PSL}(2,\mathbb{R}))$

 $\mathsf{Mod}(\Sigma)$ acts naturally on $X(\pi_1(\Sigma), \mathsf{PSL}(2, \mathbb{R}))$ For $\phi \in \mathsf{Mod}(\Sigma)$, $\rho \mapsto \rho \circ \phi$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fact $Mod(\Sigma)$ acts properly on the Teichmuller component of X.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Fact $Mod(\Sigma)$ acts properly on the Teichmuller component of X.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Question What about other components?

Fact $Mod(\Sigma)$ acts properly on the Teichmuller component of X.

Question

What about other components?

Dynamics are only understood when Σ = once punctured torus.

Fact $Mod(\Sigma)$ acts properly on the Teichmuller component of X.

Question

What about other components?

Dynamics are only understood when Σ = once punctured torus.

Question What about the dynamics of a single ϕ ?

Fact $Mod(\Sigma)$ acts properly on the Teichmuller component of X.

Question

What about other components?

Dynamics are only understood when Σ = once punctured torus.

Question What about the dynamics of a single ϕ ? e.g. fixed points for ϕ ?

Fixed points for ϕ

Fixed point for ϕ on $X(\pi_1(\Sigma), G)$

Fixed point for ϕ on $X(\pi_1(\Sigma), G) \leftrightarrow$ representation $\pi_1(M_{\phi}^3) \rightarrow G$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Fixed point for ϕ on $X(\pi_1(\Sigma), G) \leftrightarrow$ representation $\pi_1(M_{\phi}^3) \rightarrow G$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 M_{ϕ}^3 = mapping torus of ϕ .

Fixed point for ϕ on $X(\pi_1(\Sigma), G) \leftrightarrow$ representation $\pi_1(M_{\phi}^3) \rightarrow G$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\begin{split} & \mathcal{M}_{\phi}^{3} = \text{mapping torus of } \phi. \\ & \pi_{1}(\mathcal{M}_{\phi}^{3}) = \langle \pi_{1}(\Sigma), T \mid T\gamma T^{-1} = \phi(\gamma) \rangle \end{split}$$

Fixed point for ϕ on $X(\pi_1(\Sigma), G) \leftrightarrow$ representation $\pi_1(M_{\phi}^3) \rightarrow G$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\begin{split} & \mathcal{M}_{\phi}^{3} = \text{mapping torus of } \phi. \\ & \pi_{1}(\mathcal{M}_{\phi}^{3}) = \langle \pi_{1}(\Sigma), \, \mathcal{T} \mid \mathcal{T}\gamma \, \mathcal{T}^{-1} = \phi(\gamma) \rangle \end{split}$$

 $ho \in X(\pi_1(\Sigma), G)$ fixed by ϕ means

Fixed point for ϕ on $X(\pi_1(\Sigma), G) \leftrightarrow$ representation $\pi_1(M_{\phi}^3) \rightarrow G$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\begin{split} & \mathcal{M}_{\phi}^{3} = \text{mapping torus of } \phi. \\ & \pi_{1}(\mathcal{M}_{\phi}^{3}) = \langle \pi_{1}(\Sigma), \, \mathcal{T} \mid \mathcal{T}\gamma \, \mathcal{T}^{-1} = \phi(\gamma) \rangle \end{split}$$

 $ho \in X(\pi_1(\Sigma), G)$ fixed by ϕ means $ho(\phi(\gamma)) =$

Fixed point for ϕ on $X(\pi_1(\Sigma), G) \leftrightarrow$ representation $\pi_1(M_\phi^3) \to G$

$$\begin{split} & \mathcal{M}_{\phi}^{3} = \text{mapping torus of } \phi. \\ & \pi_{1}(\mathcal{M}_{\phi}^{3}) = \langle \pi_{1}(\Sigma), \, \mathcal{T} \mid \mathcal{T}\gamma \, \mathcal{T}^{-1} = \phi(\gamma) \rangle \end{split}$$

 $ho\in X(\pi_1(\Sigma),G)$ fixed by ϕ means $ho(\phi(\gamma))=t\,
ho(\gamma)\,t^{-1}$

Fixed point for ϕ on $X(\pi_1(\Sigma), G) \leftrightarrow$ representation $\pi_1(M_\phi^3) \to G$

$$\begin{split} & \mathcal{M}_{\phi}^{3} = \text{mapping torus of } \phi. \\ & \pi_{1}(\mathcal{M}_{\phi}^{3}) = \langle \pi_{1}(\Sigma), \, \mathcal{T} \mid \mathcal{T}\gamma \, \mathcal{T}^{-1} = \phi(\gamma) \rangle \end{split}$$

 $ho\in X(\pi_1(\Sigma),G)$ fixed by ϕ means $ho(\phi(\gamma))=t\,
ho(\gamma)\,t^{-1}$

 $t \leftrightarrow \rho(T)$

▲ロト ▲圖 → ▲ 国 ト ▲ 国 - - - の Q ()

Question What is the dimension of $fix(\phi)$? Are there isolated fixed points? Interesting families?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Question What is the dimension of $fix(\phi)$? Are there isolated fixed points? Interesting families?

Proposition

If Σ is closed and M^3_{ϕ} has a real place, then this gives an isolated fixed point for ϕ acting on $X(\pi_1(\Sigma), \mathsf{PSL}(2, \mathbb{R}))$

Question What is the dimension of $fix(\phi)$? Are there isolated fixed points? Interesting families?

Proposition

If Σ is closed and M^3_{ϕ} has a real place, then this gives an isolated fixed point for ϕ acting on $X(\pi_1(\Sigma), \mathsf{PSL}(2, \mathbb{R}))$

If Σ has n boundary components and M_{ϕ}^3 has a real place, then this real place belongs to a n-dimensional component of fix(ϕ).

Question What is the dimension of $fix(\phi)$? Are there isolated fixed points? Interesting families?

Proposition

If Σ is closed and M^3_{ϕ} has a real place, then this gives an isolated fixed point for ϕ acting on $X(\pi_1(\Sigma), \mathsf{PSL}(2, \mathbb{R}))$

If Σ has n boundary components and M_{ϕ}^3 has a real place, then this real place belongs to a n-dimensional component of fix(ϕ).

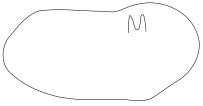
Question Describe the dynamics of ϕ near a fixed point.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Definition

A transversely real projective codimension 1 foliation on a manifold ${\cal M}$ is

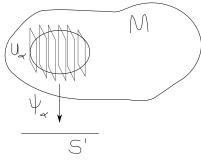
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



Definition

A transversely real projective codimension 1 foliation on a manifold ${\cal M}$ is

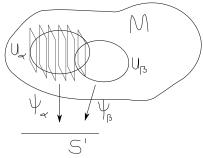
▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで



Definition

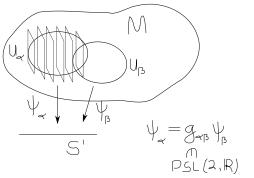
A transversely real projective codimension 1 foliation on a manifold ${\cal M}$ is

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで



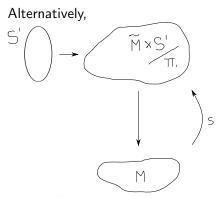
Definition

A transversely real projective codimension 1 foliation on a manifold M is

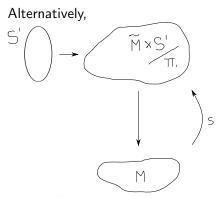


The holonomy of this foliation is a map $\pi_1(M) o \mathsf{PSL}(2,\mathbb{R})$

Alternatively,



A flat S^1 bundle with holonomy in PSL(2, \mathbb{R}), and a section s transverse to the horizontal



A flat S^1 bundle with holonomy in PSL(2, \mathbb{R}), and a section s transverse to the horizontal

A transversely projective foliation on M^3 gives M a Seifert volume [Definition of Brooks - Goldman]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A transversely projective foliation on M^3 gives M a Seifert volume [Definition of Brooks - Goldman]

There are examples of hyperbolic M^3 with nonzero Seifert volume.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A transversely projective foliation on M^3 gives M a Seifert volume [Definition of Brooks - Goldman]

There are examples of hyperbolic M^3 with nonzero Seifert volume.

Question

Which hyperbolic manifolds have non-zero Seifert volume? What is the volume associated to a given $\rho : \pi_1(M^3) \to \mathsf{PSL}(2,\mathbb{R})$?

A transversely projective foliation on M^3 gives M a Seifert volume [Definition of Brooks - Goldman]

There are examples of hyperbolic M^3 with nonzero Seifert volume.

Question

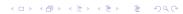
Which hyperbolic manifolds have non-zero Seifert volume? What is the volume associated to a given $\rho : \pi_1(M^3) \to \mathsf{PSL}(2,\mathbb{R})$? Given M^3 , what is the set of all Seifert volumes of all holonomy representations?

Degerneations of hyperbolic structures on manifolds

- Degerneations of hyperbolic structures on manifolds
- Representations at the boundary of Dehn filling space

Degerneations of hyperbolic structures on manifolds

Representations at the boundary of Dehn filling space



Some references

- 1. (Arithmetic invariants, real places)
 - D. Calegari Real places and torus bundles. Preprint. arXiv:math/0510416
 - C. Machlachlan, A. Reid *The Arithmetic of Hyperbolic 3-Manifolds*. Graduate Texts in Mathematics, 219. Springer-Verlag, New York, 2003
 - W. Neumann Realizing arithmetic invariants of hyperbolic 3manifolds. Contemp. Math. 541 (Amer. Math. Soc. 2011), 233-246
 - J. Sinick Real places and surface bundles. Preprint. arXiv:1005.3856v1

2. (Dynamics of mapping classes)

- R. Canary Dynamics on PSL(2, C)-character varieties: 3-manifolds with toroidal boundary components. Preprint. arXiv:1110.6567v1
 - R. Canary Moduli spaces of hyperbolic 3-manifolds and dynamics on character varieties. Preprint. arXiv:0911.1418v2
- W. Goldman The modular group action on real SL(2)-characters of a one-holed torus. Geom. Topol. 7 (2003) 443-486

M. Kapovich On the dynamics of pseudo-Anosov homeomorphisms on representation varieties of surface groups Ann. Acad. Sci. Fenn., Vol. 23 (1998) p. 83-100

Some references

- 3. (Transversely projective foliations)
 - R.Brooks, W.Goldman The Godbillon-Vey invariant of a transversely homogeneous foliation. Trans. Amer. Math. Soc., 286, (1984), 651-664.
- R.Brooks, W.Goldman Volume in Seifert space. Duke Math. J. 51 (1984), 529-545.