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An Example

Let T C SL(2,C)
Think T = lift of Kleinian group m (M*) C PSL(2,C).

Fact
The trace field of T is a number field

trace field = Q(trl")

Fact
Some conjugate gF'g™! has all matrix entries in a number field K
(K is a degree 2 extension of Q(trl)).
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1. Arithmetic Invariants

Question

Which number fields K arise as trace fields of hyperbolic
manifolds?

Conjecture (Neumann, Reid)

Every non-real concrete number field arises.

Question
Which hyperbolic manifolds M3 have trace fields with a real place?

Theorem (Calegari)

If M3 fibers with fiber = once punctured torus, then no real place.



Question
What do real place reps “look like” in X(m1(M3),SL(2,R))?
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Fact
Mod(X) acts properly on the Teichmuller component of X.

Question
What about other components?

Dynamics are only understood when ¥ = once punctured torus.

Question
What about the dynamics of a single ¢?
e.g. fixed points for ¢?
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Fixed points for ¢

Fixed point for ¢ on X(m1(X), G) < representation 7r1(l\/l(§;) — G

/\/]2 = mapping torus of ¢.
m(M3) = (m(X), TI TAT = ¢(7))

p € X(m(X), G) fixed by ¢ means

p(d(7) =tp(y) ™!

t < p(T)
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Describing the fixed set of ¢

Question
What is the dimension of fix(¢)?
Are there isolated fixed points? Interesting families?

Proposition

If ¥ is closed and I\/Ig has a real place, then this gives an isolated
fixed point for ¢ acting on X(m1(X), PSL(2,R))

If X has n boundary components and Md3> has a real place, then
this real place belongs to a n-dimensional component of fix(¢).

Question
Describe the dynamics of ¢ near a fixed point.
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Definition
A transversely real projective codimension 1 foliation on a manifold

M is

V=%,

M
PSL(A.R)
The holonomy of this foliation is a map m1(M) — PSL(2,R)
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Seifert Volume

A transversely projective foliation on M3 gives M a Seifert volume
[Definition of Brooks - Goldman]

There are examples of hyperbolic M3 with nonzero Seifert volume.

Question

Which hyperbolic manifolds have non-zero Seifert volume? What
is the volume associated to a given p : m1(M3) — PSL(2,R)?
Given M3, what is the set of all Seifert volumes of all holonomy
representations?
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