The hyperkähler geometry of $\mathcal{CP}(\boldsymbol{S})$

Brice Loustau

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The hyperkähler geometry of the deformation space of complex projective structures on a surface

Brice Loustau

August 3, 2012

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

Outline

- Complex projective structures
- 2 The character variety
- 3 The Schwarzian parametrization
- 4 The minimal surface parametrization

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

- 1 Complex projective structures
- 2 The character variety
- 3 The Schwarzian parametrization
- 4 The minimal surface parametrization

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

What is a complex projective structure?

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

What is a complex projective structure?

Let S be a closed oriented surface of genus $g \geqslant 2$.

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

What is a complex projective structure?

Let S be a closed oriented surface of genus $g \ge 2$.

Definition

A complex projective structure on S is a (G,X)-structure on S where the model space is $X = \mathbb{C}P^1$ and the Lie group of transformations of X is $G = PSL_2(\mathbb{C})$.

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

What is a complex projective structure?

Let S be a closed oriented surface of genus $g \ge 2$.

Definition

A complex projective structure on S is a (G, X)-structure on S where the model space is $X = \mathbb{C}P^1$ and the Lie group of transformations of X is $G = PSL_2(\mathbb{C})$.

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

$\mathcal{CP}(S)$ and Teichmüller space $\mathcal{T}(S)$

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

$\mathcal{CP}(S)$ and Teichmüller space $\mathcal{T}(S)$

Definition

 $\mathcal{CP}(S)$ is the deformation space of all complex projective structures on S:

$$\mathcal{CP}(S) = \{ \text{all } \mathbb{C}P^1 \text{-structures on } S \} / Diff_0^+(S) .$$

A point $Z \in \mathcal{CP}(S)$ is called a marked complex projective surface.

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

$\mathcal{CP}(S)$ and Teichmüller space $\mathcal{T}(S)$

Definition

 $\mathcal{CP}(S)$ is the deformation space of all complex projective structures on S:

$$\mathcal{CP}(S) = \{ \text{all } \mathbb{C}P^1 \text{-structures on } S \} / Diff_0^+(S) .$$

A point $Z \in \mathcal{CP}(S)$ is called a marked complex projective surface.

 $\mathcal{CP}(S)$ is a complex manifold of dimension $\dim_{\mathbb{C}} \mathcal{CP}(S) = 6g - 6$.

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

$\mathcal{CP}(S)$ and Teichmüller space $\mathcal{T}(S)$

Definition

 $\mathcal{CP}(S)$ is the deformation space of all complex projective structures on S:

$$\mathcal{CP}(S) = \{ \text{all } \mathbb{C}P^1 \text{-structures on } S \} / Diff_0^+(S) .$$

A point $Z \in \mathcal{CP}(S)$ is called a marked complex projective surface.

$$\mathcal{CP}(S)$$
 is a complex manifold of dimension $\dim_{\mathbb{C}} \mathcal{CP}(S) = 6g - 6$.

Note: A complex projective atlas is in particular a complex atlas on S (transition functions are holomorphic).

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

$\mathcal{CP}(S)$ and Teichmüller space $\mathcal{T}(S)$

Definition

 $\mathcal{CP}(S)$ is the deformation space of all complex projective structures on S:

$$\mathcal{CP}(S) = \{\text{all } \mathbb{C}\mathbf{P}^1\text{-structures on }S\}/Diff_0^+(S) .$$

A point $Z \in \mathcal{CP}(S)$ is called a marked complex projective surface.

$$\mathcal{CP}(S)$$
 is a complex manifold of dimension $\dim_{\mathbb{C}} \mathcal{CP}(S) = 6g - 6$.

Note: A complex projective atlas is in particular a complex atlas on S (transition functions are holomorphic).

Definition

There is a forgetful map $p: \mathcal{CP}(S) \to \mathcal{T}(S)$ where

$$\mathcal{T}(S) = \{\text{all complex structures on } S\}/Diff_0^+(S)$$

is the Teichmüller space of S.

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

Fuchsian and quasifuchsian structures

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

Fuchsian and quasifuchsian structures

If any Kleinian group Γ (*i.e.* discrete subgroup of $PSL_2(\mathbb{C})$) acts freely and properly on some open subset U of $\mathbb{C}P^1$, the quotient inherits a complex projective structure.

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

Fuchsian and quasifuchsian structures

If any Kleinian group Γ (*i.e.* discrete subgroup of $PSL_2(\mathbb{C})$) acts freely and properly on some open subset U of $\mathbb{C}P^1$, the quotient inherits a complex projective structure.

Complex projective structures

The character variety

The Schwarzian parametrization

The minimal surface parametrization

Fuchsian structures

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

Fuchsian structures

In particular, any Riemann surface X can be equipped with a compatible $\mathbb{C}\mathbf{P^1}$ -structure by the uniformization theorem:

$$X = \mathbb{H}^2$$

where $\Gamma \subset PSL_2(\mathbb{R})$ is a Fuchsian group.

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

Fuchsian structures

In particular, any Riemann surface X can be equipped with a compatible $\mathbb{C}\mathbf{P^1}$ -structure by the uniformization theorem:

$$X = \mathbb{H}^2$$

where $\Gamma \subset PSL_2(\mathbb{R})$ is a Fuchsian group.

Note: This defines a *Fuchsian section* $\sigma_{\mathcal{F}}: \mathcal{T}(S) \to \mathcal{CP}(S)$.

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

Quasifuchsian structures

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

Quasifuchsian structures

By Bers' simultaneous uniformization theorem, given two complex structures $(X^+,X^-)\in \mathcal{T}(S)\times \mathcal{T}(\overline{S})$, there exists a unique Kleinian group Γ such that:

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

Quasifuchsian structures

By Bers' simultaneous uniformization theorem, given two complex structures $(X^+,X^-)\in \mathcal{T}(S)\times \mathcal{T}(\overline{S})$, there exists a unique Kleinian group Γ such that:

The hyperkähler geometry of $\mathcal{CP}(\boldsymbol{S})$

Brice Loustau

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

- Complex projective structures
- 2 The character variety
- 3 The Schwarzian parametrization
- 4 The minimal surface parametrization

Complex projective structures

The character variety

The Schwarzian parametrization

The minimal surface parametrization

Holonomy

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

Holonomy

Any complex projective structure $Z \in \mathcal{CP}(S)$ defines a holonomy representation $\rho : \pi_1(S) \to G = PSL_2(\mathbb{C})$.

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

Holonomy

Any complex projective structure $Z \in \mathcal{CP}(S)$ defines a holonomy representation $\rho : \pi_1(S) \to G = PSL_2(\mathbb{C})$.

The hyperkähler geometry of $\mathcal{CP}(\boldsymbol{S})$

Brice Loustau

Complex projective structures

The character variety

The Schwarzian parametrization

The minimal surface parametrization

The character variety

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The character variety

Holonomy defines a map

$$hol: \mathcal{CP}(S) \to \mathcal{X}(S,G)$$
;

where
$$\mathcal{X}(S,G) = \operatorname{Hom}(\pi_1(S),G)//G$$
 is the character variety of S .

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The character variety

Holonomy defines a map

$$hol: \mathcal{CP}(S) \to \mathcal{X}(S,G) \ ;$$

where $\mathcal{X}(S,G) = \operatorname{Hom}(\pi_1(S),G)//G$ is the character variety of S. hol is a local biholomorphism.

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The character variety

Holonomy defines a map

$$hol: \mathcal{CP}(S) \to \mathcal{X}(S,G)$$
;

where $\mathcal{X}(S,G) = \operatorname{Hom}(\pi_1(S),G)//G$ is the character variety of S. hol is a local biholomorphism.

By a general construction of Goldman, the character variety $\mathcal{X}(S,G)$ enjoys a natural complex symplectic structure ω_G .

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The character variety

Holonomy defines a map

$$hol: \mathcal{CP}(S) \to \mathcal{X}(S,G)$$
;

where $\mathcal{X}(S,G) = \operatorname{Hom}(\pi_1(S),G)//G$ is the character variety of S. hol is a local biholomorphism.

By a general construction of Goldman, the character variety $\mathcal{X}(S,G)$ enjoys a natural complex symplectic structure ω_G .

Abusing notations, we also let ω_G denote the complex symplectic structure on $\mathcal{CP}(S)$ obtained by pulling back ω_G by the holonomy map $hol: \mathcal{CP}(S) \to \mathcal{X}(S,G)$.

The hyperkähler geometry of $\mathcal{CP}(\boldsymbol{S})$

Brice Loustau

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The character variety (continued)

Complex projective structures

The character variety

The Schwarzian parametrization

The minimal surface parametrization

The character variety (continued)

Theorem (Goldman)

The restriction of the complex symplectic structure on the Fuchsian slice $\mathcal{F}(S)$ is the Weil-Petersson Kähler form:

$$\sigma_{\mathcal{F}}^*(\omega_{\mathbf{G}}) = \omega_{WP}$$
.

The character variety

The Schwarzian

The minimal surface parametrization

The character variety (continued)

Theorem (Goldman)

The restriction of the complex symplectic structure on the Fuchsian slice $\mathcal{F}(S)$ is the Weil-Petersson Kähler form:

$$\sigma_{\mathcal{F}}^*(\omega_{\mathcal{G}}) = \omega_{WP}$$
.

Theorem (Platis, L)

Complex Fenchel-Nielsen coordinates (l_i, τ_i) associated to any pants decomposition are canonical coordinates for the symplectic structure:

$$\omega_{G} = \sum_{i} dl_{i} \wedge d\tau_{i} .$$

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

Hitchin-Kobayashi correspondence

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

Hitchin-Kobayashi correspondence

Theorem (Hitchin, Simpson, Corlette, Donaldson)

Fix a complex structure X on S. There is a real-analytic bijection

$$\mathcal{H}_X:\mathcal{X}^0(S,G)\stackrel{\sim}{\to}\mathcal{M}^0_{\mathrm{Dol}}(X,G)$$

where $\mathcal{M}^0_{\mathrm{Dol}}(X,G)$ is the moduli space of topologically trivial polystable Higgs bundles on X.

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

Hitchin-Kobayashi correspondence

Theorem (Hitchin, Simpson, Corlette, Donaldson)

Fix a complex structure X on S. There is a real-analytic bijection

$$H_X: \mathcal{X}^0(S,G) \overset{\sim}{\to} \mathcal{M}^0_{\mathrm{Dol}}(X,G)$$

where $\mathcal{M}_{\mathrm{Dol}}^0(X,G)$ is the moduli space of topologically trivial polystable Higgs bundles on X.

Note: H_X is not holomorphic, in fact:

The character variety

The Schwarzian

The minimal surface parametrization

Hitchin-Kobayashi correspondence

Theorem (Hitchin, Simpson, Corlette, Donaldson)

Fix a complex structure X on S. There is a real-analytic bijection

$$H_X: \mathcal{X}^0(S,G) \overset{\sim}{\to} \mathcal{M}^0_{\mathrm{Dol}}(X,G)$$

where $\mathcal{M}^0_{\mathrm{Dol}}(X,G)$ is the moduli space of topologically trivial polystable Higgs bundles on X.

Note: H_X is not holomorphic, in fact:

Theorem (Hitchin)

There is a natural hyperkähler structure (g, I, J, K) on $\mathcal{M}^0_{\mathrm{Dol}}(X, G)$. The map H_X is holomorphic with respect to J. It is also a symplectomorphism for the appropriate symplectic structures.

The hyperkähler geometry of $\mathcal{CP}(\boldsymbol{S})$

Brice Loustau

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

- Complex projective structures
- 2 The character variety
- 3 The Schwarzian parametrization
- 4 The minimal surface parametrization

The hyperkähler geometry of $\mathcal{CP}(\boldsymbol{S})$

Brice Loustau

Complex projective structures

The character variety

The Schwarzian

parametrization
The minimal surface parametrization

The cotangent hyperkähler structure

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The cotangent hyperkähler structure

Recall that if M is any complex manifold, its holomorphic cotangent bundle T^*M is equipped with a canonical complex symplectic structure $\omega_{\rm can}$.

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The cotangent hyperkähler structure

Recall that if M is any complex manifold, its holomorphic cotangent bundle T^*M is equipped with a canonical complex symplectic structure $\omega_{\rm can}$.

Theorem (Feix, Kaledin)

If M is a real-analytic Kähler manifold, then there exists a unique hyperkähler structure in a neighborhood of the zero section in T^*M such that:

- it refines the complex symplectic structure
- it extends the Kähler structure off the zero section
- the U(1)-action in the fibers is isometric.

The hyperkähler geometry of $\mathcal{CP}(\boldsymbol{S})$

Brice Loustau

Complex projective structures

The character variety

The Schwarzian parametrization

The minimal surface parametrization

The Schwarzian parametrization

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The Schwarzian parametrization

Recall that there is a canonical holomorphic projection $p: \mathcal{CP}(S) \to \mathcal{T}(S)$.

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The Schwarzian parametrization

Recall that there is a canonical holomorphic projection $p: \mathcal{CP}(S) \to \mathcal{T}(S)$.

The Schwarzian derivative is an operator on maps between projective surfaces such that:

The character variety

The Schwarzian

The minimal surface parametrization

The Schwarzian parametrization

Recall that there is a canonical holomorphic projection $p:\mathcal{CP}(S) \to \mathcal{T}(S)$.

The Schwarzian derivative is an operator on maps between projective surfaces such that:

• It turns a fiber $\leadsto p^{-1}(X)$ into a complex affine space modeled on the vector space $H^0(X, K^2) = T_X^* \mathcal{T}(S)$.

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The Schwarzian parametrization

Recall that there is a canonical holomorphic projection $p:\mathcal{CP}(S) \to \mathcal{T}(S)$.

The Schwarzian derivative is an operator on maps between projective surfaces such that:

- It turns a fiber $\rightsquigarrow p^{-1}(X)$ into a complex affine space modeled on the vector space $H^0(X, K^2) = T_X^* \mathcal{T}(S)$.
- Globally, $\mathcal{CP}(S) \approx^{\sigma} T^*\mathcal{T}(S)$ but this identification depends on the choice of a "zero section" $\sigma : \mathcal{T}(S) \to \mathcal{CP}(S)$.

The character variety

The Schwarzian

The minimal surface parametrization

The Schwarzian parametrization

Recall that there is a canonical holomorphic projection $p:\mathcal{CP}(S) \to \mathcal{T}(S)$.

The Schwarzian derivative is an operator on maps between projective surfaces such that:

- It turns a fiber $\leadsto p^{-1}(X)$ into a complex affine space modeled on the vector space $H^0(X, K^2) = T_X^* \mathcal{T}(S)$.
- Globally, $\mathcal{CP}(S) \approx^{\sigma} T^*\mathcal{T}(S)$ but this identification depends on the choice of a "zero section" $\sigma : \mathcal{T}(S) \to \mathcal{CP}(S)$.

For each choice of σ , we thus get a symplectic structure ω^{σ} on the whole space $\mathcal{CP}(S)$ (pulling back ω_{can}) and a hyperkähler structure on some neighborhood of the Fuchsian slice.

The hyperkähler geometry of $\mathcal{CP}(\boldsymbol{S})$

Brice Loustau

Complex projective structures

The character variety

The Schwarzian parametrization

The minimal surface parametrization

The Schwarzian parametrization (continued)

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The Schwarzian parametrization (continued)

Theorem (L)

$$\mathcal{CP}(S) \approx^{\sigma} T^*\mathcal{T}(S)$$
 is a complex symplectomorphism iff $d(\sigma - \sigma_{\mathcal{F}}) = \omega_{WP}$ (on $\mathcal{T}(S)$).

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The Schwarzian parametrization (continued)

Theorem (L)

 $\mathcal{CP}(S) \approx^{\sigma} T^*\mathcal{T}(S)$ is a complex symplectomorphism iff $d(\sigma - \sigma_{\mathcal{F}}) = \omega_{WP}$ (on $\mathcal{T}(S)$).

Using results of McMullen (also Takhtajan-Teo, Krasnov-Schlenker):

Theorem (Kawai, L)

If σ is a (generalized) Bers section, $\mathcal{CP}(S) \approx^{\sigma} T^*\mathcal{T}(S)$ is a complex symplectomorphism.

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The Schwarzian parametrization (continued)

Theorem (L)

 $\mathcal{CP}(S) \approx^{\sigma} T^*\mathcal{T}(S)$ is a complex symplectomorphism iff $d(\sigma - \sigma_{\mathcal{F}}) = \omega_{WP}$ (on $\mathcal{T}(S)$).

Using results of McMullen (also Takhtajan-Teo, Krasnov-Schlenker):

Theorem (Kawai, L)

If σ is a (generalized) Bers section, $\mathcal{CP}(S) \approx^{\sigma} T^*\mathcal{T}(S)$ is a complex symplectomorphism.

Complex projective structures

The character variety

The Schwarzian

parametrization
The minimal surface parametrization

The Schwarzian parametrization (continued)

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The Schwarzian parametrization (continued)

Consequences:

 Fibers of p and Bers slices are Lagrangian complex submanifolds.

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The Schwarzian parametrization (continued)

- Fibers of p and Bers slices are Lagrangian complex submanifolds.
- (generalized) Quasifuchsian reciprocity.

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The Schwarzian parametrization (continued)

- Fibers of p and Bers slices are Lagrangian complex submanifolds.
- (generalized) Quasifuchsian reciprocity.
- ullet If σ is elected among Bers sections,

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The Schwarzian parametrization (continued)

- Fibers of p and Bers slices are Lagrangian complex submanifolds.
- (generalized) Quasifuchsian reciprocity.
- ullet If σ is elected among Bers sections,
 - The hyperkähler stucture we get on CP(S) refines the complex symplectic structure,

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The Schwarzian parametrization (continued)

- Fibers of p and Bers slices are Lagrangian complex submanifolds.
- (generalized) Quasifuchsian reciprocity.
- If σ is elected among Bers sections,
 - The hyperkähler stucture we get on CP(S) refines the complex symplectic structure,
 - but the new complex structure J depends on the choice of the Bers section. In other words the bunch of hyperkähler structures we get is parametrized by T(S).

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The Schwarzian parametrization (continued)

- Fibers of p and Bers slices are Lagrangian complex submanifolds.
- (generalized) Quasifuchsian reciprocity.
- If σ is elected among Bers sections,
 - The hyperkähler stucture we get on CP(S) refines the complex symplectic structure,
 - but the new complex structure J depends on the choice of the Bers section. In other words the bunch of hyperkähler structures we get is parametrized by T(S).
 - This is similar to the situation we saw with the Hitchin-Kobayashi correspondence.

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The Schwarzian parametrization (continued)

- Fibers of p and Bers slices are Lagrangian complex submanifolds.
- (generalized) Quasifuchsian reciprocity.
- If σ is elected among Bers sections,
 - The hyperkähler stucture we get on CP(S) refines the complex symplectic structure,
 - but the new complex structure J depends on the choice of the Bers section. In other words the bunch of hyperkähler structures we get is parametrized by T(S).
 - This is similar to the situation we saw with the Hitchin-Kobayashi correspondence.
 Quiz: what is a significant difference though?

The hyperkähler geometry of $\mathcal{CP}(\boldsymbol{S})$

Brice Loustau

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

- Complex projective structures
- 2 The character variety
- 3 The Schwarzian parametrization
- 4 The minimal surface parametrization

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The minimal surface parametrization

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The minimal surface parametrization

The space of almost-Fuchsian structures $\mathcal{AF}(S)\subset\mathcal{QF}(S)$ is a neighborhood of the Fuchsian slice such that if $Z\in\mathcal{AF}(S)$, the hyperbolic 3-manifold associated to Z contains a unique minimal surface Σ .

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The minimal surface parametrization

The space of almost-Fuchsian structures $\mathcal{AF}(S)\subset\mathcal{QF}(S)$ is a neighborhood of the Fuchsian slice such that if $Z\in\mathcal{AF}(S)$, the hyperbolic 3-manifold associated to Z contains a unique minimal surface Σ .

The Gauss-Codazzi equations satisfied by the second fundamental form II_{Σ} are equivalent to the fact that II_{Σ} is the real part of a unique holomorphic quadratic φ .

The character variety

The Schwarzian

The minimal surface parametrization

The minimal surface parametrization

The space of almost-Fuchsian structures $\mathcal{AF}(S)\subset\mathcal{QF}(S)$ is a neighborhood of the Fuchsian slice such that if $Z\in\mathcal{AF}(S)$, the hyperbolic 3-manifold associated to Z contains a unique minimal surface Σ .

The Gauss-Codazzi equations satisfied by the second fundamental form II_{Σ} are equivalent to the fact that II_{Σ} is the real part of a unique holomorphic quadratic φ .

This defines a map
$$\begin{tabular}{cccc} {\cal AF}(S) & \to & {\cal T}^*{\cal T}(S) \\ {\cal Z} & \mapsto & ([I_{\Sigma}], \varphi) \end{tabular} \ .$$

The character variety

The Schwarzian

The minimal surface parametrization

The minimal surface parametrization

The space of almost-Fuchsian structures $\mathcal{AF}(S)\subset\mathcal{QF}(S)$ is a neighborhood of the Fuchsian slice such that if $Z\in\mathcal{AF}(S)$, the hyperbolic 3-manifold associated to Z contains a unique minimal surface Σ .

The Gauss-Codazzi equations satisfied by the second fundamental form II_{Σ} are equivalent to the fact that II_{Σ} is the real part of a unique holomorphic quadratic φ .

This defines a map
$$\begin{array}{ccc} \mathcal{AF}(S) & \to & T^*\mathcal{T}(S) \\ Z & \mapsto & ([I_{\Sigma}], \varphi) \end{array}$$
.

It is a diffeomorphism of $\mathcal{AF}(S)$ onto some neighborhood of the zero section of $T^*\mathcal{T}(S)$.

The Schwarzian

The minimal surface parametrization

The minimal surface parametrization

The space of almost-Fuchsian structures $\mathcal{AF}(S)\subset\mathcal{QF}(S)$ is a neighborhood of the Fuchsian slice such that if $Z\in\mathcal{AF}(S)$, the hyperbolic 3-manifold associated to Z contains a unique minimal surface Σ .

The Gauss-Codazzi equations satisfied by the second fundamental form II_{Σ} are equivalent to the fact that II_{Σ} is the real part of a unique holomorphic quadratic φ .

This defines a map
$$\begin{array}{ccc} \mathcal{AF}(S) & \to & T^*\mathcal{T}(S) \\ \mathcal{Z} & \mapsto & ([I_{\Sigma}], \varphi) \end{array}$$
 .

It is a diffeomorphism of $\mathcal{AF}(S)$ onto some neighborhood of the zero section of $T^*\mathcal{T}(S)$.

Again, one can use this "minimal surface parametrization" to pull back the hyperkähler structure of $T^*\mathcal{T}(S)$ on $\mathcal{CP}(S)$.

The hyperkähler geometry of $\mathcal{CP}(\boldsymbol{S})$

Brice Loustau

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The minimal surface parametrization (continued)

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The minimal surface parametrization (continued)

The notion of renormalized volume of almost-Fuchsian manifolds defines a function W on $\mathcal{AF}(S)$.

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The minimal surface parametrization (continued)

The notion of renormalized volume of almost-Fuchsian manifolds defines a function W on $\mathcal{AF}(S)$.

Using arguments of Krasnov-Schlenker to compute the variation of ${\it W}$ under an infinitesimal deformation of the metric, one shows:

Complex projective structures

The character variety

The Schwarzian

The minimal surface parametrization

The minimal surface parametrization (continued)

The notion of renormalized volume of almost-Fuchsian manifolds defines a function W on $\mathcal{AF}(S)$.

Using arguments of Krasnov-Schlenker to compute the variation of W under an infinitesimal deformation of the metric, one shows:

Theorem (L)

The minimal surface parametrization $\mathcal{AF}(S) \stackrel{\sim}{\to} \mathcal{T}^*\mathcal{T}(S)$ is a real symplectomorphism (for the appropriate symplectic structures).