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What is a complex projective structure?

Let S be a closed oriented surface of genus g > 2.
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What is a complex projective structure?

Let S be a closed oriented surface of genus g > 2.

Definition

A complex projective structure on S is a (G ,X )-structure on S

where the model space is X = CP
1 and the Lie group of

transformations of X is G = PSL2(C).
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Let S be a closed oriented surface of genus g > 2.

Definition

A complex projective structure on S is a (G ,X )-structure on S

where the model space is X = CP
1 and the Lie group of
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CP(S) and Teichmüller space T (S)

Definition

CP(S) is the deformation space of all complex projective structures
on S :

CP(S) = {all CP
1
-structures on S}/Diff +

0 (S) .

A point Z ∈ CP(S) is called a marked complex projective surface.
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CP(S) and Teichmüller space T (S)

Definition

CP(S) is the deformation space of all complex projective structures
on S :

CP(S) = {all CP
1
-structures on S}/Diff +

0 (S) .

A point Z ∈ CP(S) is called a marked complex projective surface.

CP(S) is a complex manifold of dimension dimC CP(S) = 6g − 6.
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CP(S) and Teichmüller space T (S)

Definition

CP(S) is the deformation space of all complex projective structures
on S :

CP(S) = {all CP
1
-structures on S}/Diff +

0 (S) .

A point Z ∈ CP(S) is called a marked complex projective surface.

CP(S) is a complex manifold of dimension dimC CP(S) = 6g − 6.

Note: A complex projective atlas is in particular a complex atlas on
S (transition functions are holomorphic).
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CP(S) and Teichmüller space T (S)

Definition

CP(S) is the deformation space of all complex projective structures
on S :

CP(S) = {all CP
1
-structures on S}/Diff +

0 (S) .

A point Z ∈ CP(S) is called a marked complex projective surface.

CP(S) is a complex manifold of dimension dimC CP(S) = 6g − 6.

Note: A complex projective atlas is in particular a complex atlas on
S (transition functions are holomorphic).

Definition

There is a forgetful map p : CP(S) → T (S) where

T (S) = {all complex structures on S}/Diff
+
0 (S)

is the Teichmüller space of S .
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Fuchsian and quasifuchsian structures

If any Kleinian group Γ (i.e. discrete subgroup of PSL2(C)) acts
freely and properly on some open subset U of CP

1, the quotient
inherits a complex projective structure.



The hyperkähler
geometry of CP(S)

Brice Loustau

Complex projective
structures

The character variety

The Schwarzian
parametrization

The minimal surface
parametrization

Fuchsian and quasifuchsian structures
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freely and properly on some open subset U of CP

1, the quotient
inherits a complex projective structure.
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Fuchsian structures

In particular, any Riemann surface X can be equipped with a
compatible CP

1-structure by the uniformization theorem:

X = H
2

where Γ ⊂ PSL2(R) is a Fuchsian group.
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Fuchsian structures

In particular, any Riemann surface X can be equipped with a
compatible CP

1-structure by the uniformization theorem:

X = H
2

where Γ ⊂ PSL2(R) is a Fuchsian group.

Note: This defines a Fuchsian section σF : T (S) → CP(S).
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Quasifuchsian structures

By Bers’ simultaneous uniformization theorem, given two complex
structures (X+,X−) ∈ T (S)× T (S), there exists a unique Kleinian
group Γ such that:
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Holonomy

Any complex projective structure Z ∈ CP(S) defines a holonomy

representation ρ : π1(S) → G = PSL2(C).
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Any complex projective structure Z ∈ CP(S) defines a holonomy

representation ρ : π1(S) → G = PSL2(C).
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The character variety

Holonomy defines a map

hol : CP(S) → X (S ,G) ;

where X (S ,G) = Hom(π1(S),G)//G is the character variety of S .
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Holonomy defines a map

hol : CP(S) → X (S ,G) ;

where X (S ,G) = Hom(π1(S),G)//G is the character variety of S .
hol is a local biholomorphism.
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The character variety

Holonomy defines a map

hol : CP(S) → X (S ,G) ;

where X (S ,G) = Hom(π1(S),G)//G is the character variety of S .
hol is a local biholomorphism.

By a general construction of Goldman, the character variety X (S ,G)
enjoys a natural complex symplectic structure ωG .
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The character variety

Holonomy defines a map

hol : CP(S) → X (S ,G) ;

where X (S ,G) = Hom(π1(S),G)//G is the character variety of S .
hol is a local biholomorphism.

By a general construction of Goldman, the character variety X (S ,G)
enjoys a natural complex symplectic structure ωG .

Abusing notations, we also let ωG denote the complex symplectic
structure on CP(S) obtained by pulling back ωG by the holonomy
map hol : CP(S) → X (S ,G).
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The character variety (continued)

Theorem (Goldman)

The restriction of the complex symplectic structure on the Fuchsian
slice F(S) is the Weil-Petersson Kähler form:

σ∗

F (ωG ) = ωWP .
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The character variety (continued)

Theorem (Goldman)

The restriction of the complex symplectic structure on the Fuchsian
slice F(S) is the Weil-Petersson Kähler form:

σ∗

F (ωG ) = ωWP .

Theorem (Platis, L)

Complex Fenchel-Nielsen coordinates (li , τi ) associated to any pants
decomposition are canonical coordinates for the symplectic structure:

ωG =
∑

i

dli ∧ dτi .
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Hitchin-Kobayashi correspondence

Theorem (Hitchin, Simpson, Corlette, Donaldson)

Fix a complex structure X on S . There is a real-analytic bijection

HX : X 0(S ,G)
∼
→ M0

Dol(X ,G)

where M0

Dol(X ,G) is the moduli space of topologically trivial
polystable Higgs bundles on X .
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Hitchin-Kobayashi correspondence

Theorem (Hitchin, Simpson, Corlette, Donaldson)

Fix a complex structure X on S . There is a real-analytic bijection

HX : X 0(S ,G)
∼
→ M0

Dol(X ,G)

where M0

Dol(X ,G) is the moduli space of topologically trivial
polystable Higgs bundles on X .

Note: HX is not holomorphic, in fact:
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Hitchin-Kobayashi correspondence

Theorem (Hitchin, Simpson, Corlette, Donaldson)

Fix a complex structure X on S . There is a real-analytic bijection

HX : X 0(S ,G)
∼
→ M0

Dol(X ,G)

where M0

Dol(X ,G) is the moduli space of topologically trivial
polystable Higgs bundles on X .

Note: HX is not holomorphic, in fact:

Theorem (Hitchin)

There is a natural hyperkähler structure (g , I , J,K) on M0

Dol(X ,G).
The map HX is holomorphic with respect to J. It is also a
symplectomorphism for the appropriate symplectic structures.
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The cotangent hyperkähler structure

Recall that if M is any complex manifold, its holomorphic cotangent
bundle T ∗M is equipped with a canonical complex symplectic
structure ωcan.
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The cotangent hyperkähler structure

Recall that if M is any complex manifold, its holomorphic cotangent
bundle T ∗M is equipped with a canonical complex symplectic
structure ωcan.

Theorem (Feix, Kaledin)

If M is a real-analytic Kähler manifold, then there exists a unique
hyperkähler structure in a neighborhood of the zero section in T ∗M

such that:

• it refines the complex symplectic structure

• it extends the Kähler structure off the zero section

• the U(1)-action in the fibers is isometric.
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The Schwarzian parametrization

Recall that there is a canonical holomorphic projection
p : CP(S) → T (S).
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The Schwarzian parametrization

Recall that there is a canonical holomorphic projection
p : CP(S) → T (S).

The Schwarzian derivative is an operator on maps between
projective surfaces such that:
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The Schwarzian parametrization

Recall that there is a canonical holomorphic projection
p : CP(S) → T (S).

The Schwarzian derivative is an operator on maps between
projective surfaces such that:

• It turns a fiber  p−1(X ) into a complex affine space modeled
on the vector space H0(X ,K2) = T ∗

XT (S).
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The Schwarzian parametrization

Recall that there is a canonical holomorphic projection
p : CP(S) → T (S).

The Schwarzian derivative is an operator on maps between
projective surfaces such that:

• It turns a fiber  p−1(X ) into a complex affine space modeled
on the vector space H0(X ,K2) = T ∗

XT (S).

• Globally, CP(S) ≈σ T ∗T (S) but this identification depends on
the choice of a “zero section” σ : T (S) → CP(S).
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The Schwarzian parametrization

Recall that there is a canonical holomorphic projection
p : CP(S) → T (S).

The Schwarzian derivative is an operator on maps between
projective surfaces such that:

• It turns a fiber  p−1(X ) into a complex affine space modeled
on the vector space H0(X ,K2) = T ∗

XT (S).

• Globally, CP(S) ≈σ T ∗T (S) but this identification depends on
the choice of a “zero section” σ : T (S) → CP(S).

For each choice of σ, we thus get a symplectic structure ωσ on the
whole space CP(S) (pulling back ωcan) and a hyperkähler structure
on some neighborhood of the Fuchsian slice.
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(continued)

Theorem (L)

CP(S) ≈σ T ∗T (S) is a complex symplectomorphism iff
d(σ − σF ) = ωWP (on T (S)).



The hyperkähler
geometry of CP(S)

Brice Loustau

Complex projective
structures

The character variety

The Schwarzian
parametrization

The minimal surface
parametrization

The Schwarzian parametrization
(continued)

Theorem (L)

CP(S) ≈σ T ∗T (S) is a complex symplectomorphism iff
d(σ − σF ) = ωWP (on T (S)).

Using results of McMullen (also Takhtajan-Teo, Krasnov-Schlenker):

Theorem (Kawai, L)

If σ is a (generalized) Bers section, CP(S) ≈σ T ∗T (S) is a complex
symplectomorphism.
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The Schwarzian parametrization
(continued)

Theorem (L)

CP(S) ≈σ T ∗T (S) is a complex symplectomorphism iff
d(σ − σF ) = ωWP (on T (S)).

Using results of McMullen (also Takhtajan-Teo, Krasnov-Schlenker):

Theorem (Kawai, L)

If σ is a (generalized) Bers section, CP(S) ≈σ T ∗T (S) is a complex
symplectomorphism.
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(continued)

Consequences:
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(continued)

Consequences:

• Fibers of p and Bers slices are Lagrangian complex
submanifolds.
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(continued)

Consequences:

• Fibers of p and Bers slices are Lagrangian complex
submanifolds.

• (generalized) Quasifuchsian reciprocity.
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(continued)

Consequences:

• Fibers of p and Bers slices are Lagrangian complex
submanifolds.

• (generalized) Quasifuchsian reciprocity.

• If σ is elected among Bers sections,
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The Schwarzian parametrization
(continued)

Consequences:

• Fibers of p and Bers slices are Lagrangian complex
submanifolds.

• (generalized) Quasifuchsian reciprocity.

• If σ is elected among Bers sections,

• The hyperkähler stucture we get on CP(S) refines the complex
symplectic structure,
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The Schwarzian parametrization
(continued)

Consequences:

• Fibers of p and Bers slices are Lagrangian complex
submanifolds.

• (generalized) Quasifuchsian reciprocity.

• If σ is elected among Bers sections,

• The hyperkähler stucture we get on CP(S) refines the complex
symplectic structure,

• but the new complex structure J depends on the choice of the
Bers section. In other words the bunch of hyperkähler structures
we get is parametrized by T (S).
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The Schwarzian parametrization
(continued)

Consequences:

• Fibers of p and Bers slices are Lagrangian complex
submanifolds.

• (generalized) Quasifuchsian reciprocity.

• If σ is elected among Bers sections,

• The hyperkähler stucture we get on CP(S) refines the complex
symplectic structure,

• but the new complex structure J depends on the choice of the
Bers section. In other words the bunch of hyperkähler structures
we get is parametrized by T (S).

• This is similar to the situation we saw with the
Hitchin-Kobayashi correspondence.
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The Schwarzian parametrization
(continued)

Consequences:

• Fibers of p and Bers slices are Lagrangian complex
submanifolds.

• (generalized) Quasifuchsian reciprocity.

• If σ is elected among Bers sections,

• The hyperkähler stucture we get on CP(S) refines the complex
symplectic structure,

• but the new complex structure J depends on the choice of the
Bers section. In other words the bunch of hyperkähler structures
we get is parametrized by T (S).

• This is similar to the situation we saw with the
Hitchin-Kobayashi correspondence.
Quiz : what is a significant difference though?
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The minimal surface parametrization

The space of almost-Fuchsian structures AF(S) ⊂ QF(S) is a
neighborhood of the Fuchsian slice such that if Z ∈ AF(S), the
hyperbolic 3-manifold associated to Z contains a unique minimal
surface Σ.



The hyperkähler
geometry of CP(S)

Brice Loustau

Complex projective
structures

The character variety

The Schwarzian
parametrization

The minimal surface
parametrization

The minimal surface parametrization

The space of almost-Fuchsian structures AF(S) ⊂ QF(S) is a
neighborhood of the Fuchsian slice such that if Z ∈ AF(S), the
hyperbolic 3-manifold associated to Z contains a unique minimal
surface Σ.

The Gauss-Codazzi equations satisfied by the second fundamental
form IIΣ are equivalent to the fact that IIΣ is the real part of a
unique holomorphic quadratic ϕ.
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The minimal surface parametrization

The space of almost-Fuchsian structures AF(S) ⊂ QF(S) is a
neighborhood of the Fuchsian slice such that if Z ∈ AF(S), the
hyperbolic 3-manifold associated to Z contains a unique minimal
surface Σ.

The Gauss-Codazzi equations satisfied by the second fundamental
form IIΣ are equivalent to the fact that IIΣ is the real part of a
unique holomorphic quadratic ϕ.

This defines a map
AF(S) → T ∗T (S)

Z 7→ ([IΣ], ϕ)
.
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The minimal surface parametrization

The space of almost-Fuchsian structures AF(S) ⊂ QF(S) is a
neighborhood of the Fuchsian slice such that if Z ∈ AF(S), the
hyperbolic 3-manifold associated to Z contains a unique minimal
surface Σ.

The Gauss-Codazzi equations satisfied by the second fundamental
form IIΣ are equivalent to the fact that IIΣ is the real part of a
unique holomorphic quadratic ϕ.

This defines a map
AF(S) → T ∗T (S)

Z 7→ ([IΣ], ϕ)
.

It is a diffeomorphism of AF(S) onto some neighborhood of the
zero section of T ∗T (S).
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The minimal surface parametrization

The space of almost-Fuchsian structures AF(S) ⊂ QF(S) is a
neighborhood of the Fuchsian slice such that if Z ∈ AF(S), the
hyperbolic 3-manifold associated to Z contains a unique minimal
surface Σ.

The Gauss-Codazzi equations satisfied by the second fundamental
form IIΣ are equivalent to the fact that IIΣ is the real part of a
unique holomorphic quadratic ϕ.

This defines a map
AF(S) → T ∗T (S)

Z 7→ ([IΣ], ϕ)
.

It is a diffeomorphism of AF(S) onto some neighborhood of the
zero section of T ∗T (S).

Again, one can use this “minimal surface parametrization” to pull
back the hyperkähler structure of T ∗T (S) on CP(S).
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The notion of renormalized volume of almost-Fuchsian manifolds
defines a function W on AF(S).
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The notion of renormalized volume of almost-Fuchsian manifolds
defines a function W on AF(S).

Using arguments of Krasnov-Schlenker to compute the variation of
W under an infinitesimal deformation of the metric, one shows:
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The notion of renormalized volume of almost-Fuchsian manifolds
defines a function W on AF(S).

Using arguments of Krasnov-Schlenker to compute the variation of
W under an infinitesimal deformation of the metric, one shows:

Theorem (L)

The minimal surface parametrization AF(S)
∼
→ T ∗T (S) is a real

symplectomorphism (for the appropriate symplectic structures).
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