
EXERCICES – MAXIMAL REPRESENTATIONS

1. Finitely generated subgroups of surface groups

The aim of these exercices is to prove Scott’s Theorem: every finitely generated subgroup
of a surface group is almost geometric.

A subgroup of a surface group π1Σ is said geometric if it is of the form π1Y for an
incompressible surface Y of Σ (i.e. π1Y injects in π1Σ). A subgroup S of a surface group π1Σ
is called almost geometric if there is a finite covering Σ′ → Σ and an incompressible surface
Y of Σ′ such that S = π1Y < π1Σ′ < π1Σ.

The main idea is to relate this result for a surface group G to an algebraic property of G:
G is locally extended residually finite.

Recall that a group G is residually finite (RF) if for any non-trivial element g of G, there
is a finite index subgroup G′ < G such that g /∈ G′. When S is subgroup of G, G is called
S-residually finite (S-RF) if for any g ∈ GrS, there is a finite index subgroup G′ containing
S but not g. The group G is called extended residually finite (ERF) if it is S-RF for any
subgroup S of G. It is called locally extended residually finite (LERF), if it is S-RF for any
finitely generated subgroup S.

1. Recast those properties (RF, ERF, LERF) in term of the profinite topology of G (find
a friend to explain to you the profinite topology).

2. If G is RF, ERF, or LERF, proove that any subgroup of G has the same property. If K
is a group containing G as a finite index subgroup, proove that K has the same property.

3. Let X be a Hausdorff topological space with regular covering X̃ with covering group G.
Let C be a compact subset of X̃. Proove that {g ∈ G | gC ∩ C 6= ∅} is finite.

4. Let X, X̃ and G as above. Proove that the following conditions are equivalent:
(1) G is RF.
(2) For any compact subset C of X̃, there is a finite index subgroup G′ of G such that

gC ∩ C = ∅ for any non-trivial element g of G′.
(3) For any compact subset C of X̃, the projection X̃ → X factors through a finite

covering X ′ such that C projects by a homeomorphism into X ′.

5. Let X, X̃ and G as above. Proove that G is LERF if and only if, given any finitely
generated subgroup S of G and a compact subset C of X̃/S, there is a finite covering X ′

of X such that the projection X̃/S → X factors through X ′ and such that C projects by a
homeomorphism into X ′.

6. Let Σ be a connected surface such that π1F is finitely generated and let C be a compact
subset of F . Proove that there is a compact, connected, incompressible subsurface Y of F
containing C and such that π1Y → π1F is an isomorphism.
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7. Let F be a surface. Proove that π1F is LERF if and only if, given any finitely generated
subgroup S of π1F and g in π1F rS there is a finite covering F ′ of F such that π1F

′ contains
S and not g and such that S is geometric in F ′.

Let H be the hyperbolic plane. Recall that there exists P a right angled regular pentagon
in H. Let G be the group generated by the reflections through the sides of P . Let L the
geodesic lines appearing in the tesselation H = G · P and let H be the set of half-spaces
whose boundary is a line L of L.

8. Proove that every surface group π1Σg (g ≥ 2) is a finite index subgroup of G.

Define R the following constant: x is point in H and r1 and r2 two geodesic rays staring
at x and orthogonal at x and l is the geodesic asympotic to both r1 and r2, then R is the
distance from x to l.

9. Let S be a finitely generated subgroup of G.
Let CH(S) be the convex hull of S and let CH(S) be the intersection of the half-planes

in H containing CH(S). Proove that CH(S) is contained is the R-neighborhood of CH(S).

10. Proove that CH(S)/S is compact.

11. Let Ω be the (infinitely generated) reflection groups through the sides of CH(S) and
let G′ be the group generated by Ω and S.

Proove that Ω is normalized by S, that G′/Ω ' S and that G′ is of finite index in G.

12. Prove that G′ is RF.

13. Denote by r the projection G′ → G′/Ω = S so that r|S = id. Let f : G′ → G′ | g 7→
g−1 · r(g). Prove that f is continuous in the profinite topology, that S = f−1({1}) and that
S is closed in the profinite topology. Conclude.

2. Topology of Homeo+(S1)

Let S1 = R/Z be the circle and letG = Homeo+(S1) be the group of orientation preserving
homeomorphisms of S1. Let G̃ be the group of homeomorphisms of R commuting with
integer translations, i.e. homeomorphisms f such that f(x+ 1) = f(x) + 1 for any x in R.

14. Define the topology on G and G̃.

15. Exhibit a “natural” map from G̃ to G. What is the kernel of this homomorphism?
Proove that it is surjective.

16. Proove that f is in G̃ if and only if f : R → R is increasing and commutes with
x 7→ x+ 1.

17. Proove that G̃ is contractible (hint: convex combinations). Conclude that G̃ → G is
the universal covering of G.

18. Proove that the stabilizer in G̃ of a point inR is contractible. Proove that the stabilizer
in G of a point in S1 is contractible. Determine the homotopy type of G.

19. Define the (sub)groups Diffeo+
k (S1) (k ∈ N∗), Diffeo+

∞(S1), Diffeo+
ω (S1) and their uni-

versal coverings. What are the homotopy types of those groups? What are their topologies?
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20. Prove that PSL(2,R) acts faithfully on S1, i.e. that there is an injective homomorphism
PSL(2,R)→ Diffeo+

ω (S1).

21. What is π1PSL(2,R)? Let PSL(2,R)(k) be the unique (proove uniqueness!) connected
k-covering of PSL(2,R) (k ∈ N∗). Which classical group is PSL(2,R)(2)? Proove that
there exists PSL(2,R)(k) ↪→ Diffeo+

ω (S1). Why are all those subgroups of Homeo+(S1) not
conjugated?

22. Determine the topology of PSL2,R and of ˜PSL2,R.

23. Proove the lemmata about m and m stated in the first lectures.

3. Topology of Sp(2n,R)

Let ω be the symplectic form on R2n whose matrix in the canonical basis is
(

0 In
−In 0

)
.

Let Sp(2n,R) be the group of ω-symplectic linear transformations of R2n and let K =
Sp(2n,R) ∩O(2n).

24. What are the Lie algebras sp(2n,R) and k of Sp(2n,R) and K? (as subalgebras of
gl(2n,R) = M2n(R)).

25. Proove that b(A,B) = tr(AB) is an Sp(2n,R)-invariant non-degenerate quadratic form
on sp(2n,R) and on k. Determine p = k⊥b. What is the signature of b|k? of b|p?

26. Proove that K × p→ Sp(2n,R) | (k,X) 7→ k exp(X) is a diffeomorphism.

27. Proove that K ' U(n). What is π1K? What is π1Sp(2n,R)?

A subspace V of R2n is called isotropic or ω-isotropic if ω|V = 0.

28. What is the maximal dimension of an isotropic subspace?

A subspace is called Lagrangian if it is isotropic and of maximal dimension. Let L be the
set of all Lagrangian subspaces.

29. Prove that L is homogenous under the action of Sp(2n,R). Define the (a?) topology
on L. Prove that the Sp(2n,R)-action is continuous.

Let L+ be the set of oriented Lagrangians.

30. Prove that L+ is Sp(2n,R)-homogenous. What is π1L+? Prove that any orbital
application Sp(2n,R)→ L+ induces an isomorphism π1Sp(2n,R)→ π1L+.

4. Maximal Representations

31. Let π1Σg be a surface group and ρ : π1Σg → SL(2,R) be a maximal representation and
let τ be the homomorphism SL(2,R) → Sp(2n,R) sending

(
a b
c d

)
to
(
aIn bIn
cIn dIn

)
. Prove that

τ ◦ ρ is maximal.

32. Let τ : SL(2,R) → GL(2n,R) be the (unique!) irreducible homomorphism. Prove
that (up to conjugation) τ(SL(2,R)) ⊂ Sp(2n,R). Prove that τ ◦ ρ is maximal.
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33. Let n be an integer and choose n = n1 + · · ·+nk a decomposition of n, i.e. each ni is an
integer. Let H = Sp(2n1,R) × · · · × Sp(2nk,R) as a subgroup of Sp(2n,R). Let ρ1, . . . , ρk
be k representations of π1Σg, ρi : π1Σg → Sp(2ni,R) and let ρ = (ρ1, . . . , ρk) : π1Σg → H <
Sp(2n,R) be the corresponding representation. Proove that ρ is maximal if and only if, for
all i, ρi is maximal.

34. Determine all the possible morphisms τ : SL(2,R) → Sp(2n,R) (up to conjugation).
Let ρ : π1Σg → SL(2,R) be a maximal representation. For which τ is τ ◦ ρ maximal?

35. Let Sp(2n,R)(k) be the connected k-covering of Sp(2n,R).
Proove that π1Sp(2n,R)(k) = Z and that the map Z = π1Sp(2n,R)(k) → π1Sp(2n,R) = Z

is the multiplication by k.

36. Let ρ : π1Σg → Sp(2n,R)(k) be a homomorphism. Define T (ρ) ∈ π1Sp(2n,R)(k) = Z
its invariant. Prove that |T (ρ)| ≤ n(g−1)/k. Proove that there are maximal representations
π1Σg → Sp(2n,R)(k) if and only if k divides n(g − 1).

The aim of the remaining exercices of this section is to give a hint of the existence of
maximal representations for surfaces with boundaries.

37. Let γ be a separating simple closed curve of a surface Σ of genus g. Hence Σ is the
union Σl ∪γ Σr and, by the Van Kampen Theorem, π1Σ is isomorphic to π1Σl ?π1γ π1Σr. Let
ρ : π1Σ → Sp(2n,R) be a representation. Since π1Σl and π1Σr are gree groups, ρ|π1Σl

and
ρ|π1Σr lift to representations ρ̃l : π1Σl → ˜Sp(2n,R) and ρ̃r : π1Σr → ˜Sp(2n,R).

Let z ∈ π1Sp(2n,R) < ˜Sp(2n,R) be the generator.
Proove that ρ̃l(γ) and ρ̃r(γ) are independant of the chosen lifts. Proove that ρ̃l(γ) =

zT (ρ)ρ̃r(γ) where T (ρ) ∈ Z is the Toledo number of ρ.

38. Let r : Sp(2n,R)→ R/Z = U(1) be the map obtained by composing the projection to
the first factor Sp(2n,R) ' U(n)× p→ U(n) with the determinant det : U(n)→ U(1). Let
r̃ : ˜Sp(2n,R)→ R be the lift of r.

Proove that r induces an isomorphism at the level of fundamental groups. What is r̃(z)?
Proove that, for all a, b in ˜Sp(2n,R), |r̃(ab) − r̃(a) − r̃(b)| ≤ n/2 (enough is to find a

bound).
Let r̃h : ˜Sp(2n,R) → R defined by r̃h(a) = lim r̃(ak)/k. Proove that r̃h is well defined

and continuous. Proove that |r̃h(ab)− r̃h(a)− r̃h(b)| is uniformly bounded and that r̃h(ak) =
kr̃h(a). Proove that r̃h(az) = r̃h(a) + 1.

39. Let Σ, γ,Σl,Σr be as above. Let ρl : π1Σl → Sp(2n,R) be a representation and choose
a lift ρ̃l : π1Σl → ˜Sp(2n,R).

Proove that ρ̃l(γ) is independant of the choice of ρ̃l and hence that T (ρl) := r̃h(ρ̃l(γ)) is
well defined.

Proove that |T (ρl)| ≤ n(gl − 1/2) (use next exercise). We say that ρl is maximal if and
only if T (ρl) = n(gl − 1/2).

40. Let ρ : π1Σ → Sp(2n,R) be a representation and let ρl = ρ|π1Σl
and ρr = ρ|π1Σr .

Proove that T (ρ) = T (ρl) + T (ρr). Proove that ρ is maximal if and only if ρl and ρr are
maximal.
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41. Construct maximal representations with the help of the preceeding exercices.

5. Cohomology of Groups, Continuous Cohomology, Bounded Cohomology

These sets of exercises develop the necessary material for defining cohomology, continuous
cohomology and bounded cohomolgy of groups and topological groups through the use of
resolutions.

Cohomology of Groups

Let G be a group. A G-module is said to be injective if for any injective G-morphism
ι : A→ B and any G-morphism α : A→ U , there exists a G-morphism β : B → U extending
α: β ◦ ι = α. An injective resolution of a G-module V is an exact sequence of G-morphisms:

0→ V
ε→ A0 d1→ A1 d2→ · · · → Aq−1 dq→ Aq → · · ·

where all Aq are injective. It is called a resolution without this condition on the Aq, and if
furthermore the sequence is not anymore exact but has simply dq+1 ◦ dq = 0, it is now called
a differentiable complex.

The cohomology H•(A•) of a differentiable complex (A•, d•+1) is the sequences of groups
H i(A•) = ker di+1/im(di) (G is not involved in this definition).

A morphism (or G-morphism) between two differentiable complexes A• and B• is a se-
quence of G-morphisms αq : Aq → Bq such that dq ◦ αq−1 = αq ◦ dq.

An homotopy between two G-morphisms α• and β• is a sequence of G-morphisms hq :
Aq → Bq−1 such that αq − βq = dq ◦ hq + hq+1 ◦ dq+1.

42. Let A• and B• be two differentiable complexes with A−1 = B−1 = V , d0 : V → A0

and d0 : V → B0 injective and with Aq = Bq = 0 for all q < −1. Suppose that A• is exact
(is it really necessary?) and that, for all q ≥ 0, Bq is injective. Proove that there exists
a G-morphism α• : A• → B• with α−1 = idV : A−1 → B−1. Proove that any two such
G-morphisms are homotopic.

43. Proove that any two injective resolutions A• and B• of a G-module V are homotopy
equivalent, i.e. that there exist α• : A• → B• and β• : B• → A• such that β•◦α• is homotopic
to idA• and α• ◦ β• is homotopic to idB• .

44. Proove that for any two injective resolutions of V , the cohomology of the complexes
of G-invariants elements, (A•G)•≥0 and (B•G)•≥0, are canonically isomorphic: H•(A•G) '
H•(B•G).

45. Let Aq = F(Gq+1, V ) be the G-module of functions from Gq+1 to a G-module V . The
G-action on Aq is defined so that the following calculation rule is valid: g · (f(g0, . . . , gq)) =
(g · f)(gg0, . . . , ggq) for any g in G, any f in Aq and any (g0, . . . , gq) in Gq+1.

Proove that Aq is an injective G-module.
Let ε : V → A0 be the map sending v to the function constant equal to v. And let

dq : Aq−1 → Aq defined by:

dqf(g0, . . . , gq) =

q∑
i=0

(−1)if(g0, . . . , ĝi, . . . , gq).

Proove that A• is a resolution of V , it is called the homogenous cochains resolution.
5



What is the group cohomology of G with coefficient in V ?

Continuous Cohomology

Let G be a locally compact second countable topological group.
Let CG be the category of locally convex, locally complete (meaning?) Hausdorff topolog-

ical vector space V with a continuous G-action, i.e. G× V → V is continuous.
A G-morphism (in the category CG, i.e. continuous!) f : A→ B is called strong if ker(f)

and im(f) are closed topological direct summands and if f induces an isomorphism between
A/ ker(f) and f(A).

There is a corresponding notion of strong sequences and strong exact sequences.
An element U in CG is called s-injective if for any ι : A → B strong injective and any

α : A→ U there exists an extension β : B → U (β ◦ ι = α). (ι, α and β are G-morphisms).

46. Define the notion of continuously s-injective resolution.

47. Construct the continuous cohomology of G.

48. Define the complex of continuous homogenous cochains. Show it is a continuously
s-injective resolution.

Bounded Cohomology

Let G be a locally compact second countable topological group. One want to work with
Banach spaces here, however imposing continuity of the G-action would be too restrictive.
In this section, we work with Banach spaces V with a homomorphism G → Aut(V ), V is
called continuous when G× V → V is continuous.

A G-morphism f : A→ B is called admissible if there is a continuous linear map α : B →
A (not a G-morphism!) such that ||α|| ≤ 1 and fαf = f .

AG-Banach space U is called relatively injective if for any injective admissibleG-morphism
ι : A → B between continuous G-Banach spaces and any α : A → U , there is β : B → U
such that β ◦ iota = α and ||β|| ≤ ||α||.

49. For a G-Banach space E, show that there exists a maximal subspace CE where the G-
action is continuous, proove that e ∈ CE ⇔ the orbital map G→ E | g 7→ g ·e is continuous.
Show that EG ⊂ CE.

A differentiable complex A• of Banach space has a contracting homotopy if there is an
homotopy h• between idA• and 0A• such that, for all q, ||hq|| ≤ 1.

A resolution A• is called strong if CA• has a contracting homotopy.

50. Define relatively injective strong resolutions of a Banach G-module V .

51. Define the bounded cohomology with coefficient in V .

52. Show that the complex of bounded continuous homogenous cochains (with the sup
norm) is such a resolution.
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