A Non-Injective Skinning Map with a Critical
Point

Jonah Gaster

University of Illinois - Chicago

July 31, 2012



Qe



Introduction

In his Geometrization for Haken 3-manifolds, Thurston described
an inductive way to find hyperbolic structures on (irreducible,
atoroidal) closed Haken 3-manifolds.



Introduction

In his Geometrization for Haken 3-manifolds, Thurston described
an inductive way to find hyperbolic structures on (irreducible,
atoroidal) closed Haken 3-manifolds.

He re-phrased the "glueing problem” in terms of finding a fixed
point of a certain holomorphic map on a Teichmiiller space.



Introduction

In his Geometrization for Haken 3-manifolds, Thurston described
an inductive way to find hyperbolic structures on (irreducible,
atoroidal) closed Haken 3-manifolds.

He re-phrased the "glueing problem” in terms of finding a fixed
point of a certain holomorphic map on a Teichmiiller space.

Given a geometrically finite hyperbolic 3-manifold, M, with
incompressible boundary ¥, the skinning map o is a holomorphic
map

om:T(X) — T(i)
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Apart from Thurston's insight, translating topological properties of
M to dynamical properties of oy, little is known about the
behaviour of skinning maps.

Notable exceptions: The work of McMullen, Dumas and Kent.

Bounded Image Theorem (Thurston, 1979)

If M is acylindrical, oy has compact image.

Theorem (McMullen, 1993):

If M is acylindrical, ||dop|| < ¢ < 1.

Theorem (Kent, 2009):
If M is acylindrical, diam(o ) is controlled by vol(M)

Theorem (Dumas, 2011):

opm is open and finite-to-one.
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Question:
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diffeomorphism onto its image?



Question:

» How nice is op? Is it always an immersion? covering map?
diffeomorphism onto its image?

We present a negative answer to the questions above:

Theorem (G.):
There exists a hyperbolic structure on a genus-2 handlebody, with
two rank-1 cusps, whose skinning map is non-injective and has a
critical point.
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v

A Kleinian group T is a non-elementary, discrete, torsion-free
subgroup of PSLy(C).

The limit set Ar ¢ CP!
The domain of discontinuity Qr = CP! \ Ar

A quasi-Fuchsian group is a Kleinian group whose limit set is
a Jordan curve.

v

v

v

v

A geometrically finite group is a Kleinian group possessing a
finite-sided polyhedral fundamental domain.

Every hyperbolic 3-manifold is determined by the conjugacy class
of a Kleinian group, so we may blur the distinction between I' and
H/r
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A geometrically finite Kleinian group I' has several geometric
invariants.

» The convex hull of Ar, € C H3, and the convex core &r/r

» The convex core boundary components (when non-empty),
"pleated” planes in H3, and the convex core boundary
surfaces, their quotients under

» The bending laminations Ar on the convex core boundary
surfaces (when non-empty)

» The conformal boundary surfaces (when non-empty),
quotients of components of Qr by '
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Notation:
» OF(X) C Hom( m1(X),PSLy(C)) / PSLy(C)
» GF(M) C Hom (71 (M),PSLy(C)) / PSLy(C)

Important Fact

If Qo is a component of Q¢, a geometrically finite Kleinian group,
then Stab() is quasi-Fuchsian.

This Important Fact (IF) will make a couple of appearances. The
proof uses 3-manifold topology.
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Background: 4. The Cartoon of a Quasi-Fuchsian Group

The quasiconformal deformation theory developed by Ahlfors and
Bers allows the following simple characterization:

Bers' Simultaneous Uniformization

QF(X)=T(X)xT(X)

The geomeric invariants of a quasi-Fuchsian group can be grouped
into a convenient cartoon.
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A careful treatment of geometrically finite hyperbolic structures on
3-manifolds with cusps requires the discussion of pared manifolds.

For pared manifold M = (My, P):
» My is a compact 3-manifold with boundary
» P C OMj is a disjoint union of incompressible tori and annuli
» OM = L;¥; denotes OMp \ OP

GF(M) = {[p] € GF(Mo) | p(7) is parabolic < v € m1(P)}

Theorem (Ahlfors, Bers, Marden, Sullivan)
GF(M) = T, 7(%)
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Background: Review

Most important things to keep in mind:

» The cartoon of a quasi-Fuchsian 3-manifold
> QF(X) = T(X) x T(X)
> GF(M) =11, 7(%)

» The IF: Stab(€;) < I is quasi-Fuchsian
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The Definition

In everything that follows, M = (M, P) is a geometrically finite
pared 3-manifold with incompressible boundary ¥ = OM = L;L;.

The inclusion 71(%;) < 71 (M) induces the restriction map r; on
(conjugacy classes of ) representations.

Definition
The skinning map oy is given by

[1, T(Z) <> GF(M) —"> QF(L;) < T(%;) x T(%))

T P

T(%i)

oM = HiU;\/l AL7T(E) — HiT(Z-i)

ri lands in QF(X;) because of the IF.
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Background: The Definition, Again

Assume for simplicity that M has only one boundary component.

The cover of M corresponding to m1(X) < m1(M):

" x
IF - The cover is
quasi-Fuchsian
M

Note that oy
depends only on the
topology of (M, X).
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Background: A Simple Example

Suppose M is quasi-Fuchsian. That is, M = B/r, for I < PSL,(C)
quasi-Fuchsian. Topologically, M = ¥ x [0, 1].

Then OM = Y 11, so T(OM) = T(X) x T(X)

In this case,
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A Symmetry Lemma

Let M = (My, P) is a geometrically finite pared 3-manifold with
incompressible boundary Y.

Suppose¢ € Diff(Mp) satisfies ¢(P) = P. Then ¢ induces
¢ € MCG*(M) ¢ MCG*(X). In this case,

Symmetry Lemma
om (Fix ) C Fix ¢

This lemma is an immediate consequence of the observation that
om is MCG*(M)-equivariant.
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Strategy

Strategy

Use the Symmetry Lemma to cut down dimensions and complexity,
making o, accessible.

In the example that follows, 7 (X) = H, so oy is 'only’ a
holomorphic map H — H.

Non-monotonicity restricted to a real one-dimensional submanifold
guarantees the existence of a critical point.
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The Pared Manifold

In the resulting pared 3-manifold M = (Mp, P), M° is a genus 2
handlebody, and P consists of (annuli neighborhoods of) 2
essential curves in OMj.

The curves in P are disk-busting, so by a Lemma of Otal, M is
acylindrical and ¥ = M is incompressible.

The boundary X is a four-holed sphere.
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A Path in GF(M)

Consider the regular ideal octahedron in H3, with vertices
{0, £1, 4/, 00}, and perform the indicated face identifications with
Mobius transformations. This determines a representation
Pl 7T1(M) — PSL2(C)
One may check:
» p1(m1(P)) is purely parabolic
» p1(m1(X)) is Fuchsian
> p1 € gf(M)

Since geometric finiteness is an open condition, we can deform the
representation p; in GF(M). Let p; indicate the same face
identifications, for the octahedron with vertices {0, £1, +it, co}.

Let Ty = pe (m1(E)).



'Rhombic’ Symmetry



'Rhombic’ Symmetry

There is an order 4 orientation-reversing diffeomorphism of the
genus 2 handlebody, that preserves P, and thus descends to a
mapping class ® € MCG*(X).



'Rhombic’ Symmetry

There is an order 4 orientation-reversing diffeomorphism of the
genus 2 handlebody, that preserves P, and thus descends to a
mapping class ® € MCG*(X).

In fact, there are two curves &, € m1(X) preserved by ®.



'Rhombic’ Symmetry

There is an order 4 orientation-reversing diffeomorphism of the
genus 2 handlebody, that preserves P, and thus descends to a
mapping class ® € MCG*(X).

In fact, there are two curves &, € m1(X) preserved by ®.

By the Symmetry Lemma, the subset Fix ® is preserved by o.



'Rhombic’ Symmetry

There is an order 4 orientation-reversing diffeomorphism of the
genus 2 handlebody, that preserves P, and thus descends to a
mapping class ® € MCG*(X).

In fact, there are two curves &, € m1(X) preserved by ®.

By the Symmetry Lemma, the subset Fix ® is preserved by o.

One may check that ® has a realization as a hyperbolic isometry
normalizing Iy, i.e. [p¢] € Fix ®.



'Rhombic’ Symmetry

There is an order 4 orientation-reversing diffeomorphism of the
genus 2 handlebody, that preserves P, and thus descends to a
mapping class ® € MCG*(X).

In fact, there are two curves &, € m1(X) preserved by ®.

By the Symmetry Lemma, the subset Fix ® is preserved by o.

One may check that ® has a realization as a hyperbolic isometry
normalizing Iy, i.e. [p¢] € Fix ®.

Question
What is Fix ® in 7(X)?
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A Detour: 4-Punctued Spheres

Definition

® € MCG*(X) is {&, n}-rhombic if it is order-4, orientation-
reversing, and preserves simple closed curves & and 7.

X € T(X) is {£, n}-rhombic if X € Fix &, for {£, n}-rhombic ®.

Important facts about rhombic 4-punctured spheres:
» X can be formed by gluing isometric Euclidean rhombi
> Fix & = {€,n} C ML(Z)

> Ext(,-), Ext(n,-), ¢(&,-), and ¢(n,-) each provide
diffeomorphisms from {X| X is {&,n}-rhombic} to R

> Ext(§, X) = 4Mod(Qx), where Q is the quotient of X by its

two orientation-reversing involutions
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The Path of Quasi-Fuchsian Groups

Lemma

For t € (to,1], T¢ is quasi-Fuchsian, with bending lamination on
bottom (resp. top) given by 6; - £ (resp. ;- 1), and convex core
boundary surface on bottom (resp. top) determined by ¢; = £(&, pt)

(resp. £(n, pt)).
to, B¢, and ¢; are all explicit.

Crucial step: Since I'; is preserved by the rhombic symmetry @, all
of its geometric invariants are also. This ensures that the bending
laminations are contained in the set {£,n}.
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Background Again: Grafting

Problem
How do we go from the convex core boundary to the conformal
boundary?

Solution:

Grafting provides a geometric way of passing back and forth
between the convex core boundary, with its bending lamination,
and the conformal boundary:

gr: ML(X) xT(X) — 7T(X)
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Parameterizing the Image

Now we can build a projective model for the surface in the image,
at every point along our deformation path:

Xt X is gr (0t - &, Yi), where Y; is

the {&, n}-rhombic 4-punctured
sphere determined by (&, T).

Qt
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Non-monotonicity

Recall:

> Ext(&,-) parameterizes the {£, n}-rhombic set in 7(X)
> Ext(&,X:) = 4Mod(Q;)

For non-monotonicity of oy, it suffices to show non-monotonicity
of Mod(Q;)

Explicit estimates on moduli of quadrilaterals are surprisingly hard,
especially when the quadrilateral has an ideal vertex. Fortunately, a
normalizing map will make a comparison accessible.
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Further Questions

Some natural problems:

» What is the critical point? An explanation of the geometric
role of the symmetry?

» Families of skinning maps similar to this one? An
understanding of the set of skinning maps obtained by picking
rational points in the Masur domain of the genus-2 surface?
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