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Introduction

In his Geometrization for Haken 3-manifolds, Thurston described
an inductive way to find hyperbolic structures on (irreducible,
atoroidal) closed Haken 3-manifolds.

He re-phrased the ”glueing problem” in terms of finding a fixed
point of a certain holomorphic map on a Teichmüller space.

Given a geometrically finite hyperbolic 3-manifold, M, with
incompressible boundary Σ, the skinning map σM is a holomorphic
map

σM : T (Σ)→ T (Σ̄)
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Apart from Thurston’s insight, translating topological properties of
M to dynamical properties of σM , little is known about the
behaviour of skinning maps.

Notable exceptions: The work of McMullen, Dumas and Kent.

Bounded Image Theorem (Thurston, 1979)

If M is acylindrical, σM has compact image.

Theorem (McMullen, 1993):

If M is acylindrical, ‖dσM‖ < c < 1.

Theorem (Kent, 2009):

If M is acylindrical, diam(σM) is controlled by vol(M)

Theorem (Dumas, 2011):

σM is open and finite-to-one.
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Question:

I How nice is σM? Is it always an immersion? covering map?
diffeomorphism onto its image?

We present a negative answer to the questions above:

Theorem (G.):

There exists a hyperbolic structure on a genus-2 handlebody, with
two rank-1 cusps, whose skinning map is non-injective and has a
critical point.
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Background: 1. Kleinian Groups

I A Kleinian group Γ is a non-elementary, discrete, torsion-free
subgroup of PSL2(C).

I The limit set ΛΓ ⊂ CP1

I The domain of discontinuity ΩΓ = CP1 \ ΛΓ

I A quasi-Fuchsian group is a Kleinian group whose limit set is
a Jordan curve.

I A geometrically finite group is a Kleinian group possessing a
finite-sided polyhedral fundamental domain.

Every hyperbolic 3-manifold is determined by the conjugacy class
of a Kleinian group, so we may blur the distinction between Γ and
H3/Γ.
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Background: 2. Invariants of Kleinian Groups

A geometrically finite Kleinian group Γ has several geometric
invariants.

I The convex hull of ΛΓ, CΓ ⊂ H3, and the convex core CΓ/Γ

I The convex core boundary components (when non-empty),
”pleated” planes in H3, and the convex core boundary
surfaces, their quotients under Γ

I The bending laminations λΓ on the convex core boundary
surfaces (when non-empty)

I The conformal boundary surfaces (when non-empty),
quotients of components of ΩΓ by Γ
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Background: 3. Quasi-Fuchsian vs. Geometrically Finite

Notation:

I QF(Σ) ⊂ Hom ( π1(Σ),PSL2(C) ) / PSL2(C)

I GF(M) ⊂ Hom ( π1(M),PSL2(C) ) / PSL2(C)

Important Fact

If Ω0 is a component of ΩΓ̂, Γ̂ a geometrically finite Kleinian group,
then Stab(Ω0) is quasi-Fuchsian.

This Important Fact (IF) will make a couple of appearances. The
proof uses 3-manifold topology.
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Background: 4. The Cartoon of a Quasi-Fuchsian Group

The quasiconformal deformation theory developed by Ahlfors and
Bers allows the following simple characterization:

Bers’ Simultaneous Uniformization

QF(Σ) ∼= T (Σ)× T (Σ̄)

The geomeric invariants of a quasi-Fuchsian group can be grouped
into a convenient cartoon.
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Background: 5. Pared 3-manifolds

A careful treatment of geometrically finite hyperbolic structures on
3-manifolds with cusps requires the discussion of pared manifolds.

For pared manifold M = (M0,P):

I M0 is a compact 3-manifold with boundary

I P ⊂ ∂M0 is a disjoint union of incompressible tori and annuli

I ∂M = tiΣi denotes ∂M0 \ ∂P

GF(M) = {[ρ] ∈ GF(M0) | ρ(γ) is parabolic ⇔ γ ∈ π1(P)}

Theorem (Ahlfors, Bers, Marden, Sullivan)

GF(M) ∼=
∏

i T (Σi )
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I The cartoon of a quasi-Fuchsian 3-manifold
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I The IF: Stab(Ωi ) < Γ̂ is quasi-Fuchsian
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The Definition

In everything that follows, M = (M0,P) is a geometrically finite
pared 3-manifold with incompressible boundary Σ = ∂M = tiΣi .

The inclusion π1(Σi ) ↪→ π1(M) induces the restriction map ri on
(conjugacy classes of) representations.

Definition

The skinning map σM is given by∏
i T (Σi )

σi
M ,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYoo

∼= // GF(M)
ri // QF(Σi ) oo

∼= // T (Σi )× T (Σ̄i )

p2

��
T (Σ̄i )

σM =
∏

i σ
i
M :

∏
i T (Σi )→

∏
i T (Σ̄i )

ri lands in QF(Σi ) because of the IF.
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∼= // T (Σi )× T (Σ̄i )

p2

��
T (Σ̄i )

σM =
∏

i σ
i
M :

∏
i T (Σi )→

∏
i T (Σ̄i )

ri lands in QF(Σi ) because of the IF.
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The cover of M corresponding to π1(Σ) < π1(M):

IF - The cover is
quasi-Fuchsian

Note that σM

depends only on the
topology of (M,Σ).
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Background: A Simple Example

Suppose M is quasi-Fuchsian. That is, M ∼= H3/Γ, for Γ < PSL2(C)
quasi-Fuchsian. Topologically, M ∼= Σ× [0, 1].

Then ∂M ∼= Σ t Σ̄, so T (∂M) ∼= T (Σ)× T (Σ̄)

In this case,
σM(X , Ȳ ) = (Ȳ ,X )
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A Symmetry Lemma

Let M = (M0,P) is a geometrically finite pared 3-manifold with
incompressible boundary Σ.

Supposeφ ∈ Diff(M0) satisfies φ(P) = P. Then φ induces
Φ ∈ MCG∗(M) ⊂ MCG∗(Σ). In this case,

Symmetry Lemma

σM (Fix Φ) ⊂ Fix Φ

This lemma is an immediate consequence of the observation that
σM is MCG∗(M)-equivariant.
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Strategy

Strategy

Use the Symmetry Lemma to cut down dimensions and complexity,
making σM accessible.

In the example that follows, T (Σ) ∼= H, so σM is ’only’ a
holomorphic map H→ H.

Non-monotonicity restricted to a real one-dimensional submanifold
guarantees the existence of a critical point.
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Glue the green faces of the octahedron, in pairs, with twists:



The Example: Glueing an Octahedron

Glue the green faces of the octahedron, in pairs, with twists:



The Example: Glueing an Octahedron

Glue the green faces of the octahedron, in pairs, with twists:



The Example: Glueing an Octahedron

Glue the green faces of the octahedron, in pairs, with twists:



The Example: Glueing an Octahedron

Glue the green faces of the octahedron, in pairs, with twists:



The Pared Manifold

In the resulting pared 3-manifold M = (M0,P), M◦ is a genus 2
handlebody, and P consists of (annuli neighborhoods of) 2
essential curves in ∂M0.

The curves in P are disk-busting, so by a Lemma of Otal, M is
acylindrical and Σ = ∂M is incompressible.

The boundary Σ is a four-holed sphere.
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A Path in GF(M)

Consider the regular ideal octahedron in H3, with vertices
{0,±1,±i ,∞}, and perform the indicated face identifications with
Möbius transformations. This determines a representation
ρ1 : π1(M)→ PSL2(C).

One may check:

I ρ1(π1(P)) is purely parabolic

I ρ1(π1(Σ)) is Fuchsian

I ρ1 ∈ GF(M)

Since geometric finiteness is an open condition, we can deform the
representation ρ1 in GF(M). Let ρt indicate the same face
identifications, for the octahedron with vertices {0,±1,±it,∞}.

Let Γt = ρt (π1(Σ)).
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’Rhombic’ Symmetry

There is an order 4 orientation-reversing diffeomorphism of the
genus 2 handlebody, that preserves P, and thus descends to a
mapping class Φ ∈ MCG∗(Σ).

In fact, there are two curves ξ, η ∈ π1(Σ) preserved by Φ.

By the Symmetry Lemma, the subset Fix Φ is preserved by σM .

One may check that Φ has a realization as a hyperbolic isometry
normalizing Γt , i.e. [ρt ] ∈ Fix Φ.

Question

What is Fix Φ in T (Σ)?
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A Detour: 4-Punctued Spheres

Definition

Φ ∈ MCG∗(Σ) is {ξ, η}-rhombic if it is order-4, orientation-
reversing, and preserves simple closed curves ξ and η.

X ∈ T (Σ) is {ξ, η}-rhombic if X ∈ Fix Φ, for {ξ, η}-rhombic Φ.

Important facts about rhombic 4-punctured spheres:

I X can be formed by gluing isometric Euclidean rhombi

I Fix Φ = {ξ, η} ⊂ ML(Σ)

I Ext(ξ, ·), Ext(η, ·), `(ξ, ·), and `(η, ·) each provide
diffeomorphisms from {X | X is {ξ, η}-rhombic} to R+

I Ext(ξ,X ) = 4Mod(QX ), where Q is the quotient of X by its
two orientation-reversing involutions
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The Path of Quasi-Fuchsian Groups

Lemma

For t ∈ (t0, 1], Γt is quasi-Fuchsian, with bending lamination on
bottom (resp. top) given by θt · ξ (resp. ϑt · η), and convex core
boundary surface on bottom (resp. top) determined by `t = `(ξ, ρt)
(resp. `(η, ρt)).

t0, θt , and `t are all explicit.

Crucial step: Since Γt is preserved by the rhombic symmetry Φ, all
of its geometric invariants are also. This ensures that the bending
laminations are contained in the set {ξ, η}.
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Background Again: Grafting

Problem

How do we go from the convex core boundary to the conformal
boundary?

Solution:

Grafting provides a geometric way of passing back and forth
between the convex core boundary, with its bending lamination,
and the conformal boundary:

gr :ML(Σ)× T (Σ)→ T (Σ)
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Parameterizing the Image

Now we can build a projective model for the surface in the image,
at every point along our deformation path:

Qt

θt

X t

γ

ξ

Xt is gr (θt · ξ,Yt), where Yt is
the {ξ, η}-rhombic 4-punctured
sphere determined by `(ξ, Γt).
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Non-monotonicity

Recall:

I Ext(ξ, ·) parameterizes the {ξ, η}-rhombic set in T (Σ)

I Ext(ξ,Xt) = 4Mod(Qt)

For non-monotonicity of σM , it suffices to show non-monotonicity
of Mod(Qt)

Explicit estimates on moduli of quadrilaterals are surprisingly hard,
especially when the quadrilateral has an ideal vertex. Fortunately, a
normalizing map will make a comparison accessible.
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A Normalization for Qt

We normalize by sending a pair of sides into the vertical lines
{<(z) = 0} and {<(z) = 1}.
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Finishing Non-monotonicity

In these coordinates, the
non-monotonicity becomes
visually transparent, and, more
importantly, possible to show
explicitly!
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Further Questions

Some natural problems:

I What is the critical point? An explanation of the geometric
role of the symmetry?

I Families of skinning maps similar to this one? An
understanding of the set of skinning maps obtained by picking
rational points in the Masur domain of the genus-2 surface?
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