A Non-Injective Skinning Map with a Critical Point

Jonah Gaster

University of Illinois - Chicago

July 31, 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

In his Geometrization for Haken 3-manifolds, Thurston described an inductive way to find hyperbolic structures on (irreducible, atoroidal) closed Haken 3-manifolds.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In his Geometrization for Haken 3-manifolds, Thurston described an inductive way to find hyperbolic structures on (irreducible, atoroidal) closed Haken 3-manifolds.

He re-phrased the "glueing problem" in terms of finding a fixed point of a certain holomorphic map on a Teichmüller space.

In his Geometrization for Haken 3-manifolds, Thurston described an inductive way to find hyperbolic structures on (irreducible, atoroidal) closed Haken 3-manifolds.

He re-phrased the "glueing problem" in terms of finding a fixed point of a certain holomorphic map on a Teichmüller space.

Given a geometrically finite hyperbolic 3-manifold, M, with incompressible boundary Σ , the skinning map σ_M is a holomorphic map

$$\sigma_M: \mathcal{T}(\Sigma) \to \mathcal{T}(\bar{\Sigma})$$

・ロト・日本・モート モー うへぐ

Notable exceptions: The work of McMullen, Dumas and Kent.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Notable exceptions: The work of McMullen, Dumas and Kent.

Bounded Image Theorem (Thurston, 1979)

If *M* is acylindrical, σ_M has compact image.

Notable exceptions: The work of McMullen, Dumas and Kent.

Bounded Image Theorem (Thurston, 1979)

If M is acylindrical, σ_M has compact image.

Theorem (McMullen, 1993):

If *M* is acylindrical, $\|d\sigma_M\| < c < 1$.

Notable exceptions: The work of McMullen, Dumas and Kent.

Bounded Image Theorem (Thurston, 1979)

If M is acylindrical, σ_M has compact image.

Theorem (McMullen, 1993):

If *M* is acylindrical, $\|d\sigma_M\| < c < 1$.

Theorem (Kent, 2009):

If M is acylindrical, $diam(\sigma_M)$ is controlled by vol(M)

Notable exceptions: The work of McMullen, Dumas and Kent.

Bounded Image Theorem (Thurston, 1979)

If M is acylindrical, σ_M has compact image.

Theorem (McMullen, 1993):

If *M* is acylindrical, $\|d\sigma_M\| < c < 1$.

Theorem (Kent, 2009):

If M is acylindrical, $diam(\sigma_M)$ is controlled by vol(M)

Theorem (Dumas, 2011):

 σ_M is open and finite-to-one.

Question:

(ロ)、(型)、(E)、(E)、 E) の(の)

Question:

How nice is σ_M? Is it always an immersion? covering map? diffeomorphism onto its image?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question:

How nice is σ_M? Is it always an immersion? covering map? diffeomorphism onto its image?

We present a negative answer to the questions above:

Theorem (G.):

There exists a hyperbolic structure on a genus-2 handlebody, with two rank-1 cusps, whose skinning map is non-injective and has a critical point.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

Background

Invariants of Quasi-Fuchsian and Geometrically Finite groups Pared 3-manifolds

The skinning map σ_M and a useful lemma

The definition A Symmetry Lemma

The Example Glueing an Octahedron 4-Punctured Spheres The Path of Quasi-Fuchsian Groups Non-monotonicity Further Questions

 A Kleinian group Γ is a non-elementary, discrete, torsion-free subgroup of PSL₂(C).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

► A Kleinian group Γ is a non-elementary, discrete, torsion-free subgroup of PSL₂(C).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The limit set $\Lambda_{\Gamma} \subset \mathbb{CP}^1$

A Kleinian group Γ is a non-elementary, discrete, torsion-free subgroup of PSL₂(ℂ).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The limit set $\Lambda_{\Gamma} \subset \mathbb{CP}^1$
- The domain of discontinuity $\Omega_{\Gamma} = \mathbb{CP}^1 \setminus \Lambda_{\Gamma}$

- A Kleinian group Γ is a non-elementary, discrete, torsion-free subgroup of PSL₂(ℂ).
- The limit set $\Lambda_{\Gamma} \subset \mathbb{CP}^1$
- The domain of discontinuity $\Omega_{\Gamma} = \mathbb{CP}^1 \setminus \Lambda_{\Gamma}$
- A quasi-Fuchsian group is a Kleinian group whose limit set is a Jordan curve.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► A Kleinian group Γ is a non-elementary, discrete, torsion-free subgroup of PSL₂(C).
- The limit set $\Lambda_{\Gamma} \subset \mathbb{CP}^1$
- The domain of discontinuity $\Omega_{\Gamma} = \mathbb{CP}^1 \setminus \Lambda_{\Gamma}$
- A quasi-Fuchsian group is a Kleinian group whose limit set is a Jordan curve.
- A geometrically finite group is a Kleinian group possessing a finite-sided polyhedral fundamental domain.

- ► A Kleinian group Γ is a non-elementary, discrete, torsion-free subgroup of PSL₂(C).
- The limit set $\Lambda_{\Gamma} \subset \mathbb{CP}^1$
- The domain of discontinuity $\Omega_{\Gamma} = \mathbb{CP}^1 \setminus \Lambda_{\Gamma}$
- A quasi-Fuchsian group is a Kleinian group whose limit set is a Jordan curve.
- A geometrically finite group is a Kleinian group possessing a finite-sided polyhedral fundamental domain.

Every hyperbolic 3-manifold is determined by the conjugacy class of a Kleinian group, so we may blur the distinction between Γ and $\mathbb{H}^3/\Gamma.$

- ◆ □ ▶ → 個 ▶ → 差 ▶ → 差 → のへぐ

A geometrically finite Kleinian group Γ has several geometric invariants.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A geometrically finite Kleinian group Γ has several geometric invariants.

 \blacktriangleright The convex hull of $\Lambda_{\Gamma},$ $\mathfrak{C}_{\Gamma} \subset \mathbb{H}^3,$ and the convex core $\mathfrak{C}_{\Gamma}/\Gamma$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A geometrically finite Kleinian group Γ has several geometric invariants.

- \blacktriangleright The convex hull of $\Lambda_{\Gamma},$ $\mathfrak{C}_{\Gamma}\subset\mathbb{H}^3,$ and the convex core $\mathfrak{C}_{\Gamma}/\Gamma$
- The convex core boundary components (when non-empty), "pleated" planes in H³, and the convex core boundary surfaces, their quotients under Γ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A geometrically finite Kleinian group Γ has several geometric invariants.

- \blacktriangleright The convex hull of $\Lambda_{\Gamma},$ $\mathfrak{C}_{\Gamma}\subset\mathbb{H}^3,$ and the convex core $\mathfrak{C}_{\Gamma}/\Gamma$
- The convex core boundary components (when non-empty), "pleated" planes in H³, and the convex core boundary surfaces, their quotients under Γ
- The bending laminations λ_Γ on the convex core boundary surfaces (when non-empty)

A geometrically finite Kleinian group Γ has several geometric invariants.

- \blacktriangleright The convex hull of $\Lambda_{\Gamma},$ $\mathfrak{C}_{\Gamma}\subset \mathbb{H}^3,$ and the convex core $\mathfrak{C}_{\Gamma}/\Gamma$
- The convex core boundary components (when non-empty), "pleated" planes in H³, and the convex core boundary surfaces, their quotients under Γ
- The bending laminations λ_Γ on the convex core boundary surfaces (when non-empty)

 The conformal boundary surfaces (when non-empty), quotients of components of Ω_Γ by Γ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Notation:

- $\mathcal{QF}(\Sigma) \subset \operatorname{Hom}(\pi_1(\Sigma), \operatorname{PSL}_2(\mathbb{C})) / \operatorname{PSL}_2(\mathbb{C})$
- ▶ $\mathcal{GF}(M) \subset$ Hom ($\pi_1(M)$, PSL₂(\mathbb{C})) / PSL₂(\mathbb{C})

Notation:

- $\mathcal{QF}(\Sigma) \subset \operatorname{Hom}(\pi_1(\Sigma), \operatorname{PSL}_2(\mathbb{C})) / \operatorname{PSL}_2(\mathbb{C})$
- ▶ $\mathcal{GF}(M) \subset \operatorname{Hom}(\pi_1(M), \operatorname{PSL}_2(\mathbb{C})) / \operatorname{PSL}_2(\mathbb{C})$

Important Fact

If Ω_0 is a component of $\Omega_{\hat{\Gamma}},\,\hat{\Gamma}$ a geometrically finite Kleinian group, then ${\rm Stab}(\Omega_0)$ is quasi-Fuchsian.

Notation:

- $\mathcal{QF}(\Sigma) \subset \operatorname{Hom}(\pi_1(\Sigma), \operatorname{PSL}_2(\mathbb{C})) / \operatorname{PSL}_2(\mathbb{C})$
- ▶ $\mathcal{GF}(M) \subset \operatorname{Hom}(\pi_1(M), \operatorname{PSL}_2(\mathbb{C})) / \operatorname{PSL}_2(\mathbb{C})$

Important Fact

If Ω_0 is a component of $\Omega_{\hat{\Gamma}}$, $\hat{\Gamma}$ a geometrically finite Kleinian group, then $\operatorname{Stab}(\Omega_0)$ is quasi-Fuchsian.

This Important Fact (IF) will make a couple of appearances. The proof uses 3-manifold topology.

Background: 4. The Cartoon of a Quasi-Fuchsian Group

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 - の�?

The quasiconformal deformation theory developed by Ahlfors and Bers allows the following simple characterization:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The quasiconformal deformation theory developed by Ahlfors and Bers allows the following simple characterization:

Bers' Simultaneous Uniformization $\mathcal{QF}(\Sigma) \cong \mathcal{T}(\Sigma) \times \mathcal{T}(\overline{\Sigma})$ The quasiconformal deformation theory developed by Ahlfors and Bers allows the following simple characterization:

Bers' Simultaneous Uniformization

 $\mathcal{QF}(\Sigma)\cong\mathcal{T}(\Sigma) imes\mathcal{T}(ar{\Sigma})$

The geomeric invariants of a quasi-Fuchsian group can be grouped into a convenient cartoon.

Background: 5. Pared 3-manifolds

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For pared manifold $M = (M_0, P)$:

For pared manifold $M = (M_0, P)$:

• M_0 is a compact 3-manifold with boundary

For pared manifold $M = (M_0, P)$:

- ▶ *M*₀ is a compact 3-manifold with boundary
- $P \subset \partial M_0$ is a disjoint union of incompressible tori and annuli

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For pared manifold $M = (M_0, P)$:

- ▶ *M*₀ is a compact 3-manifold with boundary
- ▶ $P \subset \partial M_0$ is a disjoint union of incompressible tori and annuli

 $\triangleright \ \partial M = \sqcup_i \Sigma_i \text{ denotes } \partial M_0 \setminus \partial P$

For pared manifold $M = (M_0, P)$:

*M*₀ is a compact 3-manifold with boundary

▶ $P \subset \partial M_0$ is a disjoint union of incompressible tori and annuli

$$\triangleright \ \partial M = \sqcup_i \Sigma_i \text{ denotes } \partial M_0 \setminus \partial P$$

 $\mathcal{GF}(M) = \{ [\rho] \in \mathcal{GF}(M_0) \mid \rho(\gamma) \text{ is parabolic } \Leftrightarrow \gamma \in \pi_1(P) \}$

For pared manifold $M = (M_0, P)$:

*M*₀ is a compact 3-manifold with boundary

- ▶ $P \subset \partial M_0$ is a disjoint union of incompressible tori and annuli
- $\triangleright \ \partial M = \sqcup_i \Sigma_i \text{ denotes } \partial M_0 \setminus \partial P$

 $\mathcal{GF}(M) = \{ [\rho] \in \mathcal{GF}(M_0) \mid \rho(\gamma) \text{ is parabolic } \Leftrightarrow \gamma \in \pi_1(P) \}$

Theorem (Ahlfors, Bers, Marden, Sullivan) $\mathcal{GF}(M) \cong \prod_i \mathcal{T}(\Sigma_i)$

Background: Review

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

► The cartoon of a quasi-Fuchsian 3-manifold

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

► The cartoon of a quasi-Fuchsian 3-manifold

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• $\mathcal{QF}(\Sigma) \cong \mathcal{T}(\Sigma) \times \mathcal{T}(\bar{\Sigma})$

► The cartoon of a quasi-Fuchsian 3-manifold

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

•
$$\mathcal{QF}(\Sigma) \cong \mathcal{T}(\Sigma) \times \mathcal{T}(\bar{\Sigma})$$

•
$$\mathcal{GF}(M) \cong \prod_i \mathcal{T}(\Sigma_i)$$

The cartoon of a quasi-Fuchsian 3-manifold

- $\mathcal{QF}(\Sigma) \cong \mathcal{T}(\Sigma) \times \mathcal{T}(\bar{\Sigma})$
- ► $\mathcal{GF}(M) \cong \prod_i \mathcal{T}(\Sigma_i)$
- The IF: $\operatorname{Stab}(\Omega_i) < \hat{\Gamma}$ is quasi-Fuchsian

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

In everything that follows, $M = (M_0, P)$ is a geometrically finite pared 3-manifold with incompressible boundary $\Sigma = \partial M = \sqcup_i \Sigma_i$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In everything that follows, $M = (M_0, P)$ is a geometrically finite pared 3-manifold with incompressible boundary $\Sigma = \partial M = \sqcup_i \Sigma_i$.

The inclusion $\pi_1(\Sigma_i) \hookrightarrow \pi_1(M)$ induces the restriction map r_i on (conjugacy classes of) representations.

In everything that follows, $M = (M_0, P)$ is a geometrically finite pared 3-manifold with incompressible boundary $\Sigma = \partial M = \sqcup_i \Sigma_i$.

The inclusion $\pi_1(\Sigma_i) \hookrightarrow \pi_1(M)$ induces the restriction map r_i on (conjugacy classes of) representations.

Definition

The skinning map σ_M is given by

 $\sigma_{\mathcal{M}} = \prod_{i} \sigma_{\mathcal{M}}^{i} : \prod_{i} \mathcal{T}(\Sigma_{i}) \to \prod_{i} \mathcal{T}(\bar{\Sigma_{i}})$

In everything that follows, $M = (M_0, P)$ is a geometrically finite pared 3-manifold with incompressible boundary $\Sigma = \partial M = \sqcup_i \Sigma_i$.

The inclusion $\pi_1(\Sigma_i) \hookrightarrow \pi_1(M)$ induces the restriction map r_i on (conjugacy classes of) representations.

Definition

The skinning map σ_M is given by

$$\sigma_{M} = \prod_{i} \sigma_{M}^{i} : \prod_{i} \mathcal{T}(\Sigma_{i}) \rightarrow \prod_{i} \mathcal{T}(\bar{\Sigma_{i}})$$

 r_i lands in $\mathcal{QF}(\Sigma_i)$ because of the IF.

Assume for simplicity that M has only one boundary component.

Assume for simplicity that M has only one boundary component. The cover of M corresponding to $\pi_1(\Sigma) < \pi_1(M)$:

・ロト・日本・モート モー うへで

Assume for simplicity that M has only one boundary component. The cover of M corresponding to $\pi_1(\Sigma) < \pi_1(M)$:

Assume for simplicity that M has only one boundary component. The cover of M corresponding to $\pi_1(\Sigma) < \pi_1(M)$:

Assume for simplicity that M has only one boundary component. The cover of M corresponding to $\pi_1(\Sigma) < \pi_1(M)$:

Background: A Simple Example

Suppose *M* is quasi-Fuchsian. That is, $M \cong \mathbb{H}^3/\Gamma$, for $\Gamma < \mathrm{PSL}_2(\mathbb{C})$ quasi-Fuchsian. Topologically, $M \cong \Sigma \times [0, 1]$.

Suppose *M* is quasi-Fuchsian. That is, $M \cong \mathbb{H}^3/\Gamma$, for $\Gamma < \mathrm{PSL}_2(\mathbb{C})$ quasi-Fuchsian. Topologically, $M \cong \Sigma \times [0, 1]$.

Then $\partial M \cong \Sigma \sqcup \overline{\Sigma}$, so $\mathcal{T}(\partial M) \cong \mathcal{T}(\Sigma) \times \mathcal{T}(\overline{\Sigma})$

Suppose *M* is quasi-Fuchsian. That is, $M \cong \mathbb{H}^3/\Gamma$, for $\Gamma < \mathrm{PSL}_2(\mathbb{C})$ quasi-Fuchsian. Topologically, $M \cong \Sigma \times [0, 1]$.

Then $\partial M \cong \Sigma \sqcup \overline{\Sigma}$, so $\mathcal{T}(\partial M) \cong \mathcal{T}(\Sigma) \times \mathcal{T}(\overline{\Sigma})$

In this case,

$$\sigma_M(X,\bar{Y})=(\bar{Y},X)$$

A Symmetry Lemma

(4日) (個) (目) (目) (目) (の)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Suppose $\phi \in \text{Diff}(M_0)$ satisfies $\phi(P) = P$. Then ϕ induces $\Phi \in \text{MCG}^*(M) \subset \text{MCG}^*(\Sigma)$. In this case,

Suppose $\phi \in \text{Diff}(M_0)$ satisfies $\phi(P) = P$. Then ϕ induces $\Phi \in \text{MCG}^*(M) \subset \text{MCG}^*(\Sigma)$. In this case,

Symmetry Lemma

 $\sigma_M(\operatorname{Fix} \Phi) \subset \operatorname{Fix} \Phi$

Suppose $\phi \in \text{Diff}(M_0)$ satisfies $\phi(P) = P$. Then ϕ induces $\Phi \in \text{MCG}^*(M) \subset \text{MCG}^*(\Sigma)$. In this case,

Symmetry Lemma

 $\sigma_M(\operatorname{Fix} \Phi) \subset \operatorname{Fix} \Phi$

This lemma is an immediate consequence of the observation that σ_M is $MCG^*(M)$ -equivariant.

Strategy

Use the Symmetry Lemma to cut down dimensions and complexity, making σ_M accessible.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Strategy

Use the Symmetry Lemma to cut down dimensions and complexity, making σ_M accessible.

In the example that follows, $\mathcal{T}(\Sigma) \cong \mathbb{H}$, so σ_M is 'only' a holomorphic map $\mathbb{H} \to \mathbb{H}$.

Strategy

Use the Symmetry Lemma to cut down dimensions and complexity, making σ_M accessible.

In the example that follows, $\mathcal{T}(\Sigma) \cong \mathbb{H}$, so σ_M is 'only' a holomorphic map $\mathbb{H} \to \mathbb{H}$.

Non-monotonicity restricted to a real one-dimensional submanifold guarantees the existence of a critical point.
Glue the green faces of the octahedron, in pairs, with twists:

Glue the green faces of the octahedron, in pairs, with twists:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Glue the green faces of the octahedron, in pairs, with twists:

Glue the green faces of the octahedron, in pairs, with twists:

The Pared Manifold

In the resulting pared 3-manifold $M = (M_0, P)$, M° is a genus 2 handlebody, and P consists of (annuli neighborhoods of) 2 essential curves in ∂M_0 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In the resulting pared 3-manifold $M = (M_0, P)$, M° is a genus 2 handlebody, and P consists of (annuli neighborhoods of) 2 essential curves in ∂M_0 .

The curves in *P* are *disk-busting*, so by a Lemma of Otal, *M* is acylindrical and $\Sigma = \partial M$ is incompressible.

In the resulting pared 3-manifold $M = (M_0, P)$, M° is a genus 2 handlebody, and P consists of (annuli neighborhoods of) 2 essential curves in ∂M_0 .

The curves in *P* are *disk-busting*, so by a Lemma of Otal, *M* is acylindrical and $\Sigma = \partial M$ is incompressible.

The boundary Σ is a four-holed sphere.

Consider the regular ideal octahedron in \mathbb{H}^3 , with vertices $\{0, \pm 1, \pm i, \infty\}$, and perform the indicated face identifications with Möbius transformations. This determines a representation $\rho_1 : \pi_1(M) \to \mathrm{PSL}_2(\mathbb{C}).$

Consider the regular ideal octahedron in \mathbb{H}^3 , with vertices $\{0, \pm 1, \pm i, \infty\}$, and perform the indicated face identifications with Möbius transformations. This determines a representation $\rho_1 : \pi_1(\mathcal{M}) \to \mathrm{PSL}_2(\mathbb{C}).$

One may check:

• $\rho_1(\pi_1(P))$ is purely parabolic

Consider the regular ideal octahedron in \mathbb{H}^3 , with vertices $\{0, \pm 1, \pm i, \infty\}$, and perform the indicated face identifications with Möbius transformations. This determines a representation $\rho_1 : \pi_1(\mathcal{M}) \to \mathrm{PSL}_2(\mathbb{C}).$

One may check:

- $\rho_1(\pi_1(P))$ is purely parabolic
- $\rho_1(\pi_1(\Sigma))$ is Fuchsian

Consider the regular ideal octahedron in \mathbb{H}^3 , with vertices $\{0, \pm 1, \pm i, \infty\}$, and perform the indicated face identifications with Möbius transformations. This determines a representation $\rho_1 : \pi_1(\mathcal{M}) \to \mathrm{PSL}_2(\mathbb{C}).$

One may check:

- $\rho_1(\pi_1(P))$ is purely parabolic
- $\rho_1(\pi_1(\Sigma))$ is Fuchsian
- ▶ $\rho_1 \in \mathcal{GF}(M)$

Consider the regular ideal octahedron in \mathbb{H}^3 , with vertices $\{0, \pm 1, \pm i, \infty\}$, and perform the indicated face identifications with Möbius transformations. This determines a representation $\rho_1 : \pi_1(M) \to \mathrm{PSL}_2(\mathbb{C}).$

One may check:

- $\rho_1(\pi_1(P))$ is purely parabolic
- $\rho_1(\pi_1(\Sigma))$ is Fuchsian
- ▶ $\rho_1 \in \mathcal{GF}(M)$

Since geometric finiteness is an open condition, we can deform the representation ρ_1 in $\mathcal{GF}(M)$. Let ρ_t indicate the same face identifications, for the octahedron with vertices $\{0, \pm 1, \pm it, \infty\}$.

Consider the regular ideal octahedron in \mathbb{H}^3 , with vertices $\{0, \pm 1, \pm i, \infty\}$, and perform the indicated face identifications with Möbius transformations. This determines a representation $\rho_1 : \pi_1(\mathcal{M}) \to \mathrm{PSL}_2(\mathbb{C}).$

One may check:

- $\rho_1(\pi_1(P))$ is purely parabolic
- $\rho_1(\pi_1(\Sigma))$ is Fuchsian
- ▶ $\rho_1 \in \mathcal{GF}(M)$

Since geometric finiteness is an open condition, we can deform the representation ρ_1 in $\mathcal{GF}(M)$. Let ρ_t indicate the same face identifications, for the octahedron with vertices $\{0, \pm 1, \pm it, \infty\}$.

Let
$$\Gamma_t = \rho_t (\pi_1(\Sigma)).$$

'Rhombic' Symmetry

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

'Rhombic' Symmetry

There is an order 4 orientation-reversing diffeomorphism of the genus 2 handlebody, that preserves P, and thus descends to a mapping class $\Phi \in MCG^*(\Sigma)$.

In fact, there are two curves $\xi, \eta \in \pi_1(\Sigma)$ preserved by Φ .

In fact, there are two curves $\xi, \eta \in \pi_1(\Sigma)$ preserved by Φ .

By the Symmetry Lemma, the subset Fix Φ is preserved by σ_M .

In fact, there are two curves $\xi, \eta \in \pi_1(\Sigma)$ preserved by Φ .

By the Symmetry Lemma, the subset Fix Φ is preserved by σ_M .

One may check that Φ has a realization as a hyperbolic isometry normalizing Γ_t , i.e. $[\rho_t] \in Fix \Phi$.

In fact, there are two curves $\xi, \eta \in \pi_1(\Sigma)$ preserved by Φ .

By the Symmetry Lemma, the subset $Fix \Phi$ is preserved by σ_M .

One may check that Φ has a realization as a hyperbolic isometry normalizing Γ_t , i.e. $[\rho_t] \in Fix \Phi$.

Question

What is Fix Φ in $\mathcal{T}(\Sigma)$?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Definition

 $\Phi \in \mathrm{MCG}^*(\Sigma)$ is $\{\xi, \eta\}$ -rhombic if it is order-4, orientation-reversing, and preserves simple closed curves ξ and η .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition

 $\Phi \in MCG^*(\Sigma)$ is $\{\xi, \eta\}$ -rhombic if it is order-4, orientation-reversing, and preserves simple closed curves ξ and η .

 $X \in \mathcal{T}(\Sigma)$ is $\{\xi, \eta\}$ -rhombic if $X \in Fix \Phi$, for $\{\xi, \eta\}$ -rhombic Φ .

Definition

 $\Phi \in MCG^*(\Sigma)$ is $\{\xi, \eta\}$ -rhombic if it is order-4, orientation-reversing, and preserves simple closed curves ξ and η .

 $X \in \mathcal{T}(\Sigma)$ is $\{\xi, \eta\}$ -rhombic if $X \in Fix \Phi$, for $\{\xi, \eta\}$ -rhombic Φ .

Important facts about rhombic 4-punctured spheres:

Definition

 $\Phi \in MCG^*(\Sigma)$ is $\{\xi, \eta\}$ -rhombic if it is order-4, orientation-reversing, and preserves simple closed curves ξ and η .

 $X \in \mathcal{T}(\Sigma)$ is $\{\xi, \eta\}$ -rhombic if $X \in Fix \Phi$, for $\{\xi, \eta\}$ -rhombic Φ .

Important facts about rhombic 4-punctured spheres:

▶ X can be formed by gluing isometric Euclidean rhombi

Definition

 $\Phi \in MCG^*(\Sigma)$ is $\{\xi, \eta\}$ -rhombic if it is order-4, orientation-reversing, and preserves simple closed curves ξ and η .

 $X \in \mathcal{T}(\Sigma)$ is $\{\xi, \eta\}$ -rhombic if $X \in Fix \Phi$, for $\{\xi, \eta\}$ -rhombic Φ .

Important facts about rhombic 4-punctured spheres:

► X can be formed by gluing isometric Euclidean rhombi

• Fix
$$\Phi = \{\xi, \eta\} \subset \mathcal{ML}(\Sigma)$$

Definition

 $\Phi \in MCG^*(\Sigma)$ is $\{\xi, \eta\}$ -rhombic if it is order-4, orientation-reversing, and preserves simple closed curves ξ and η .

 $X \in \mathcal{T}(\Sigma)$ is $\{\xi, \eta\}$ -rhombic if $X \in Fix \Phi$, for $\{\xi, \eta\}$ -rhombic Φ .

Important facts about rhombic 4-punctured spheres:

- ► X can be formed by gluing isometric Euclidean rhombi
- Fix $\Phi = \{\xi, \eta\} \subset \mathcal{ML}(\Sigma)$
- Ext(ξ, ·), Ext(η, ·), ℓ(ξ, ·), and ℓ(η, ·) each provide diffeomorphisms from {X | X is {ξ, η}-rhombic} to ℝ⁺

Definition

 $\Phi \in MCG^*(\Sigma)$ is $\{\xi, \eta\}$ -rhombic if it is order-4, orientation-reversing, and preserves simple closed curves ξ and η .

 $X \in \mathcal{T}(\Sigma)$ is $\{\xi, \eta\}$ -rhombic if $X \in Fix \Phi$, for $\{\xi, \eta\}$ -rhombic Φ .

Important facts about rhombic 4-punctured spheres:

- ▶ X can be formed by gluing isometric Euclidean rhombi
- Fix $\Phi = \{\xi, \eta\} \subset \mathcal{ML}(\Sigma)$
- Ext(ξ, ·), Ext(η, ·), ℓ(ξ, ·), and ℓ(η, ·) each provide diffeomorphisms from {X | X is {ξ, η}-rhombic} to ℝ⁺
- ► Ext(ξ, X) = 4Mod(Q_X), where Q is the quotient of X by its two orientation-reversing involutions

The Path of Quasi-Fuchsian Groups

▲□▶ ▲□▶ ▲国▶ ▲国▶ 三国 - のへで

Lemma

For $t \in (t_0, 1]$, Γ_t is quasi-Fuchsian, with bending lamination on bottom (resp. top) given by $\theta_t \cdot \xi$ (resp. $\vartheta_t \cdot \eta$), and convex core boundary surface on bottom (resp. top) determined by $\ell_t = \ell(\xi, \rho_t)$ (resp. $\ell(\eta, \rho_t)$).

 t_0 , θ_t , and ℓ_t are all explicit.

Lemma

For $t \in (t_0, 1]$, Γ_t is quasi-Fuchsian, with bending lamination on bottom (resp. top) given by $\theta_t \cdot \xi$ (resp. $\vartheta_t \cdot \eta$), and convex core boundary surface on bottom (resp. top) determined by $\ell_t = \ell(\xi, \rho_t)$ (resp. $\ell(\eta, \rho_t)$).

 t_0 , θ_t , and ℓ_t are all explicit.

Crucial step: Since Γ_t is preserved by the rhombic symmetry Φ , all of its geometric invariants are also. This ensures that the bending laminations are contained in the set $\{\xi, \eta\}$.

Background Again: Grafting

Problem

How do we go from the convex core boundary to the conformal boundary?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Problem

How do we go from the convex core boundary to the conformal boundary?

Solution:

Grafting provides a geometric way of passing back and forth between the convex core boundary, with its bending lamination, and the conformal boundary:

$$\mathrm{gr}:\mathcal{ML}(\Sigma)\times\mathcal{T}(\Sigma)\to\mathcal{T}(\Sigma)$$
Parameterizing the Image

▲□▶ ▲圖▶ ▲≧▶ ▲≣▶ = 目 - のへで

Parameterizing the Image

Now we can build a projective model for the surface in the image, at every point along our deformation path:

Parameterizing the Image

Now we can build a projective model for the surface in the image, at every point along our deformation path:

 X_t is $gr(\theta_t \cdot \xi, Y_t)$, where Y_t is the $\{\xi, \eta\}$ -rhombic 4-punctured sphere determined by $\ell(\xi, \Gamma_t)$.

・ロト ・聞ト ・ヨト ・ヨト

Non-monotonicity

Non-monotonicity

Recall:

• $Ext(\xi, \cdot)$ parameterizes the $\{\xi, \eta\}$ -rhombic set in $\mathcal{T}(\Sigma)$

(ロ)、(型)、(E)、(E)、 E) の(の)

• $Ext(\xi, \cdot)$ parameterizes the $\{\xi, \eta\}$ -rhombic set in $\mathcal{T}(\Sigma)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• $Ext(\xi, X_t) = 4Mod(Q_t)$

- $Ext(\xi, \cdot)$ parameterizes the $\{\xi, \eta\}$ -rhombic set in $\mathcal{T}(\Sigma)$
- $Ext(\xi, X_t) = 4Mod(Q_t)$

For non-monotonicity of σ_M , it suffices to show non-monotonicity of $Mod(Q_t)$

- $Ext(\xi, \cdot)$ parameterizes the $\{\xi, \eta\}$ -rhombic set in $\mathcal{T}(\Sigma)$
- $Ext(\xi, X_t) = 4Mod(Q_t)$

For non-monotonicity of σ_M , it suffices to show non-monotonicity of $Mod(Q_t)$

Explicit estimates on moduli of quadrilaterals are surprisingly hard, especially when the quadrilateral has an ideal vertex. Fortunately, a normalizing map will make a comparison accessible.

A Normalization for Q_t

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めんの

A Normalization for Q_t

We normalize by sending a pair of sides into the vertical lines $\{\Re(z) = 0\}$ and $\{\Re(z) = 1\}$.

A Normalization for Q_t

We normalize by sending a pair of sides into the vertical lines $\{\Re(z) = 0\}$ and $\{\Re(z) = 1\}$.

Finishing Non-monotonicity

Finishing Non-monotonicity

In these coordinates, the non-monotonicity becomes visually transparent, and, more importantly, possible to show explicitly!

Finishing Non-monotonicity

In these coordinates, the non-monotonicity becomes visually transparent, and, more importantly, possible to show explicitly!

(日)、

590

э

Further Questions

Some natural problems:

Some natural problems:

What is the critical point? An explanation of the geometric role of the symmetry?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some natural problems:

- What is the critical point? An explanation of the geometric role of the symmetry?
- Families of skinning maps similar to this one? An understanding of the set of skinning maps obtained by picking rational points in the Masur domain of the genus-2 surface?