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Motivation: knots

Every knot can be uniquely decomposed as a knot sum of prime knots
(H. Schubert). It also true for non-split links (i.e. if there is no a 2–sphere
in the complement separating the link).

Of the 14 prime knots up to 7 crossings, 3 are non-hyperbolic.
Of the 1,701,935 prime knots up to 16 crossings, 32 are non-hyperbolic.
Of the 8,053,378 prime knots with 17 crossings, 30 are non-hyperbolic.
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Motivation: links

Every link in S
3 is either a torus link, a satellite link, or a hyperbolic link,

and these three categories are mutually exclusive (W. Thurston). A prime

alternating diagram represents either a hyperbolic link or a torus link (W.
Menasco). The only alternating torus links are those of type (2, n)

From the solution of the Tait flyping conjecture (W. Menasco, M.
Thistlethwaite), each reduced alternating diagram of (2, n)–torus link is
standard.
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Methods for describing hyperbolic structure

A well-known method for describing the structure of hyperbolic manifolds
by W. Thurston was implemented in the program SnapPea (J. Weeks). It
is based on decomposition into ideal tetrahedra.

An alternative method for links is based on ideal polygons bounding the
regions of a link diagram (M. Thistlethwaite).
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Objectives

Consider a hyperbolic link complement. A preimage of a cusp in H
3 is a

set of horoballs.

Link complement Horoball packing of figure-8 knot

Cusps may be chosen so that the horoballs have disjoint interiors. There
are horoballs of arbitrarily small Euclidean diameter and one additional
horoball, the plane z = 1. We want to describe horoball packings

associated to complements of hyperbolic links.
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An alternative method

A diagram of a hyperbolic link is taut if each checkerboard surface is
incompressible, boundary incompressible in the link complement, and does
not contain any simple closed curve representing an accidental parabolic.

Given a taut diagram, associate a complex number to every crossing, and
to each side of every edge. The numbers contain all the information about
the horoball packing in H

3. They can be found from the link diagram.
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Construction: preliminaries

Take horospherical cross-sections of the cusps of S3 − L, so that length of
a meridian on each cross-section is 1.

Choose the coordinates in H
3 so that a component of the preimage of

some particular cross-section is the Euclidean plane z = 1. Parameterize
Euclidean translations on each horosphere by complex numbers so that the
meridional translation corresponds to the real number 1.
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Construction: crossing label w

Let α be an arc traveling vertically from overpass to underpass at a
crossing of the diagram. It is properly homotopic to a unique geodesic in
the link complement, which lifts to a geodesic γ in H

3, joining the centers
of the corresponding horospheres.

In H
3 let |w | = e

−d , where d is the hyperbolic intercusp distance along
the geodesic. Let the argument of w be the exterior dihedral angle
between two half-planes, each determined by γ and the meridional
translation on the one of the horospheres.

Anastasiia Tsvietkova, joint work with Morwen Thistlethwaite (UTK)Hyperbolic Structures from Link Diagrams 8 / 23



Construction: crossing label w

Let α be an arc traveling vertically from overpass to underpass at a
crossing of the diagram. It is properly homotopic to a unique geodesic in
the link complement, which lifts to a geodesic γ in H

3, joining the centers
of the corresponding horospheres.

In H
3 let |w | = e

−d , where d is the hyperbolic intercusp distance along
the geodesic. Let the argument of w be the exterior dihedral angle
between two half-planes, each determined by γ and the meridional
translation on the one of the horospheres.

Anastasiia Tsvietkova, joint work with Morwen Thistlethwaite (UTK)Hyperbolic Structures from Link Diagrams 8 / 23



Construction: crossing label w

Let α be an arc traveling vertically from overpass to underpass at a
crossing of the diagram. It is properly homotopic to a unique geodesic in
the link complement, which lifts to a geodesic γ in H

3, joining the centers
of the corresponding horospheres.

In H
3 let |w | = e

−d , where d is the hyperbolic intercusp distance along
the geodesic. Let the argument of w be the exterior dihedral angle
between two half-planes, each determined by γ and the meridional
translation on the one of the horospheres.

Anastasiia Tsvietkova, joint work with Morwen Thistlethwaite (UTK)Hyperbolic Structures from Link Diagrams 8 / 23



Construction: edge label u

A k-sided region in the link diagram is a disk whose boundary is a union
of k arcs on the boundary torus and k arcs at crossings. The preimage of
this boundary in H

3 determines a cyclic sequence of horospheres H1, ...,Hk

with centers P1, ...,Pk .

Let βj be a sub-arc corresponding to a Euclidean line segment which joins
the point where geodesics Pi−1Pi and PiPi+1 pierce Hi . The Euclidean
translation taking the initial point of βj to the terminal point defines u. Its
orientation is inherited from the orientation of the link.
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Relations for edge and crossing labels

Color the regions of the link diagram in black and white as a checkerboard.
Each edge gives rise to two arcs: on the boundary of the black region, and
on the boundary of the white one.

In an alternating diagram ui − uj = 1 holds for every edge. In a
non-alternating diagram this difference may be 1, -1 or 0
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Construction: shape parameters

Return to the ideal polygon with the vertices P1, ...,Pk in the boundary of
H

3.

Define the shape parameter ξi of the geodesic PiPi+1 to be the
cross-ratio

ξi =
(Pi−1−Pi )(Pi+1−Pi+2)

(Pi−1−Pi+1)(Pi−Pi+2)
.

Shape parameters are related to edge and crossing labels by the
formula ξi =

±wi
ui ui+1

, where the sign depends on the link orientation.

For a 3–sided region all ξi = 1. For a general k–sided region we will

obtain convenient relations for ξi .
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Relations

Perform an isometry to place the vertices Pi−1,Pi ,Pi+1 of the the polygon
at 1,∞, 0 respectively.

Then the Möbius transformation ρi : z → −ξi
z−1

determines an isometry of

H
3 which maps Pi−1,Pi ,Pi+1 to Pi ,Pi+1,Pi+2 respectively.
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Relations

Since the polygon closes up, the composite ρk ◦ ... ◦ ρ1 = 1. If we represent
the Möbius transformations by 2× 2 matrices, we see that the product

�
0 −ξk
1 −1

�
...

�
0 −ξ1
1 −1

�

is a scalar multiple of the identity matrix.

From the matrix entries we read off 3 independent polynomial relations

for every region. E. g., for a 5–sided region

1− ξi − ξi+1 − ξi+2 + ξiξi+2 = 0, 1 ≤ i ≤ 3.
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Example: the Borromean Rings

Recall that for 3–sided regions the shape parameters are 1, so

w1

u2
1

= w1

u2
2

= w1

−(u1+1)(u2+1)
= w2

(u1+1)2
= w1

(u1+1)2
= −w2

u1u3
= 1. Hence,

u1 = u2 = u3 =
1

2
(−1 + i), w1 = − i

2
= −w2.

Computer calculations can be used in the systematic study.
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Some applications: “exact” volume of 2–bridge links

Formulas that allow one to calculate hyperbolic volume from a link

diagram were obtained using Sakuma-Weeks description of triangulation
and the method. We obtain a polynomial, and the volume is expressed as
a function of one of its roots (i.e., the volume is exact).

Picture by J. Weeks

Same idea and formulas by C. Zickert can be used to compute the
complex volume (its real part is hyperbolic volume, and the imaginary
part is the Chern-Simons invariant).
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Example: twist knot

In a twist knot with k + 2 crossings, there are k − 1 isometric pairs of
tetrahedra. Their shape parameters are the ratios zi =

bi
bi−1

.

All bi can be written in terms of one label w . One easily obtains a
polynomial for w from the rightmost region.
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Some applications: link group and invariant fields

Edge and crossing labels determine a representation of a link group into
PSL2(C). The matrices for Wirtinger generators can be computed from
the labels.

Cusp and trace fields are among useful arithmetic invariants of
hyperbolic 3–manifolds. Cusp and trace fields can be computed from the
labels as well.

Edge and crossing labels describe the unique structure of a hyperbolic link,
but depend on the diagram. The projection field is a field generated over
Q by edge and crossing labels. It is a topological invariant for alternating
links and a regular isotopy invariant for all links. It contains both the cusp
and trace fields.
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Q by edge and crossing labels. It is a topological invariant for alternating
links and a regular isotopy invariant for all links.

It contains both the cusp
and trace fields.
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Some applications: labels on tangles

Consider a tangle in a 3–ball B , such that boundary of B − T is a Conway
sphere.

In a hyperbolic link the following tangle is called an encircled tangle. The
labels on the circle are called boundary labels, and all the other - interior
labels.

Theorem. Let (S3, L) be a hyperbolic link containing an oriented
encircled tangle (B ,T ). The interior labels of T are independent of the
hyperbolic link L containing T .
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Labels on tangles: the idea of proof

Suppose (B ,T ) is a tangle and B − T admits a complete hyperbolic
structure. Then the moduli space of complete hyperbolic structures on
B − T is connected and has real dimension two.

Proof of Th. Take an arbitrary complex number z �= 0 . Replace ui ,wi by
zui , zwi respectively (1 ≤ i ≤ 4). Then shape parameters ξi =

±wi
ui uj

are

unchanged and the equations given by the regions of T are still satisfied.
We constructed an entire parameter space while keeping the interior labels
constant.
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Labels on tangles: underlying geometry

The geometric reason for the rigidity is a 3–punctured sphere S in the
complement of a tangle.

3–punctured sphere is a totally geodesic space (C. Adams). If we retract
its cusps so that their boundaries have length 1, then w = ±1

4
, where the

sign depends on the link orientation. This imposes an extra constraint of
real dimension 2, determining the interior labels uniquely.
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Labels on Tangles: Tangle Ratio

Corollary. The ratio u4
u3

does not change, being a numerical invariant of a
tangle.

We obtained an equation for the ratio of a tangle with k twists. It can be
generalized to an arbitrary rational tangle.
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Related Questions: Intrinsic Geometry of Alternating Links

What are the intrinsic properties that characterize alternating links?
(Ralph Fox).

Some empirical information was gathered using the method
and horoball diagrams.

Conjecture 1. The preimage of a region of a reduced alternating link
diagram is an ideal polygon in H

3. Such polygon does not deviate far from
being planar and regular.

Conjecture 2. For intercusp lengths of geodesics corresponding to
crossings of alternating diagram, an upper bound is log 8.
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Questions

Horoball packing of Turk’s Head knot.

Pictures of horoball packings by M. Thistlethwaite
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