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Dehn–Thurston coordinates

Given a pants decomposition P = {σ1, . . . , σξ} on a surface Σ,

Dehn defined an injection i : S = S(Σ) −→ Z
ξ
�0
× Z

ξ by
i(γ) = (q1(γ), . . . , qξ(γ); tw1(γ), . . . , twξ(γ)).

1 qi (γ) = i(γ, σi ) ∈ Z�0 are the length parameters;
2 twi(γ) ∈ Z are the twist parameters of γ.
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Figure: Penner and Harer twist p̂i = −1 and D. Thurston’s twist pi = 0.
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Relation between p̂i and pi

Suppose two pairs of pants meet along σ = E ∈ PC. Label their
respective boundary curves (A,B,E ) and (C ,D,E ) in clockwise
order.

Theorem (M–Series)

Let γ ∈ S and let p̂i and pi denote the PH–twist and the DT–twist

around σ. Then

p̂i =
pi + l(A,E ;B) + l(C ,E ;D)− qi

2
,

where l(X ,Y ;Z ) denotes the number of strands of γ ∩ P running

from the boundary curve X to the boundary curve Y in the pair of

pants P = (X ,Y ,Z ).
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Thurston’s symplectic form

Let τTh be Thurston symplectic form on S ⊂ MLQ(Σ).

Theorem (M.)

Suppose that loops γ, γ� ∈ S belongs to the same chart and let

i(γ) = (q1, . . . , qξ; p1, . . . , pξ), i(γ�) = (q�
1
, . . . , q�ξ; p

�
1
, . . . , p�ξ) their

DT coordinates. Then

τTh(γ, γ�) =
1

2

ξ�

i=1

(qip
�
i − q

�
ipi ).

In addition, if γ, γ� are disjoint, then τTh(γ, γ�) = 0.



DT coordinates Maskit embedding Gluing construction Main theorems Other slices

Basic definitions on Kleinian groups

PSL(2, C) acts on H
3 by isometries and on Ĉ = C ∪∞ by

conformal maps.

Definition

A Kleinian group G is a discrete (torsion-free) subgroup of
PSL(2, C).

The limit set Λ(G ) is the set of accumulation points of the
action of G on Ĉ.

The regular set Ω(G ) is Ĉ− Λ(G ).

A Fuchsian group is a discrete subgroup of PSL(2, R), or,
equivalently, a Kleinian group G such that Λ(G ) is a circle.

A Quasifuchsian group is a Kleinian group G such that
Λ(G ) is a topological circle, or, equivalently, a quasi-conformal
deformation of a Fuchsian group.
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The Maskit embedding

The Maskit slice M is the set of
representations ρ : π1(Σ) −→ PSL(2, C)
(up to conjugation in PSL(2, C)) such
that:

1 Gρ = ρ (π1(Σ)) is discrete and ρ is
an isomorphism,

2 ρ(σi ) are parabolic,

3 all components of Ω(G ) are simply
connected and there is exactly one
invariant component Ω+(G ),

4 Ω+(G )/G is homeomorphic to Σ
and the other components are
triply punctured spheres.

Figure: Quasifuchsian Group
and Maskit Group.
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Picture of the Maskit embedding for the once punctured
torus Σ1,1

Figure: The Maskit embedding M(Σ1,1) for the once punctured torus.
Picture courtesy David Wright.
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Pleating Ray

A pleated surface is a a hyperbolic surface which is totally
geodesic almost everywhere and such that the locus of points
where it fails to be totally geodesic is a geodesic lamination.

By Thurston, each component of the boundary ∂C(G )/G of the
convex core is a pleated surface.
Given ρ ∈M, denote β(ρ) ∈ ML(Σ) the bending lamination of
∂C+/Gρ, where Gρ = ρ (π1(Σ)).
Given [η] ∈ PML(Σ), the pleating ray P = P[η] of [η] is the set of
elements ρ ∈M for which β(ρ) ∈ [η].
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Gluing construction

Let Σ be a surface with χ(Σ) < 0 and let PC = {σ1, . . . , σξ} be a
pants decomposition on it. Let µ = (µ1, . . . , µξ) ∈ H

ξ.
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STEP 1: Any triply punctured sphere is isometric to P = H/Γ,
where

Γ =
��

1 2
0 1

�
,

�
1 0
2 1

��
.

Identify any Pi to the fundamental domain ∆ of Γ by the
homeomorphisms

Φi : int(Pi ) −→ ∆.
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Gluing construction

STEP 2: Let σi = ∂�P ∩ ∂��P �, then
the gluing is described by

Ω−1
� J

−1
T
−1
µi

Ω��

where µi ∈ H is the gluing
parameter and Ω∞ = Id,

Ω0 =

�
1 −1
1 0

�
, Ω1 =

�
0 −1
1 −1

�
,

J =

�
−i 0
0 i

�
, Tµi =

�
1 µi

0 1

�
.

Tµ
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Projective structure

This describes a (complex) projective structure on Σ, which
depends on the gluing parameter µ = (µ1, . . . , µξ) ∈ H

ξ. In

particular, given µ ∈ H
ξ, we define a developing map

Devµ : Σ̃ −→ Ĉ and a holonomy map ρµ : π1(Σ) −→ PSL(2, C).

Theorem (M–Series)

If Devµ : Σ̃ −→ Ĉ is an embedding, then ρµ is a group

isomorphism and ρµ ∈M.

In addition, these representations ρµ parametrise M.
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Top Terms’ Formula

Let ρµ : π1(Σ) −→ PSL(2, C) be the holonomy described by the
gluing construction. Let γ be a simple closed curve on Σ, not
parallel to any of the pants curves σi .

Theorem (Top Terms’ Formula, M – Series)

Tr ρµ(γ) = ±i
q2h

�
µ1 +

(p1 − q1)

q1

�q1

· · ·
�

µξ +
(pξ − qξ)

qξ

�qξ

+ R,

where

q =
�ξ

i=1
qi > 0;

R represents terms with total degree in µ1 · · ·µξ at most

q − 2;

h = h(γ) is the total number of waves.
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Asymptotic direction of pleating rays

Theorem (Asymptotic direction, M, Series, Keen–Series)

Suppose that η =
�ξ

i=1
aiγi is an admissible measured lamination

on Σ. Then, as the bending measure β(Gµ) ∈ [η] tends to zero,

the pleating ray P[η] in M approaches the line

�µi = −pi (η)

qi (η)
+ 1,

�µ1

�µj
=

qj(η)

q1(η)
,

where (q1(η), . . . , qξ(η); p1(η), . . . , pξ(η)) are the Dehn–Thurston

coordinates for η.
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Generalised gluing construction

Given a pants decomposition PC = {σ1, . . . , σξ} on Σ, let

c = (c1, . . . , cξ) ∈ R
ξ
+ and µ = (µ1, . . . ,µξ) ∈ (C/2iπ)ξ.

We describe a (complex) projective structure on Σ with developing
map Devc,µ and holonomy map ρc,µ. In particular, ρc,µ(γ) is
hyperbolic and Tr ρc,µ(γ) = ±2 cosh(cj).

Theorem (M.)

If c −→ 0 keeping µ fixed, where µi = iπ−µi
ci

, then

ρc,µ −→ ρµ.
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Linear slices Lc

Given PC = {σ1, . . . , σξ}, the complex Fenchel–Nielsen

coordinates FNC : QF(Σ) −→ (C+/2iπ)ξ × (C/2iπ)ξ are defined
by

FNC(G ) = (λ1, . . . , λξ, τ1, . . . , τξ),

where λi are the complex length and τi are the complex twist of
the pants curve σi .

Definition

Given c ∈ R
ξ
+, we define the c–slice (or the linear slice) Lc to be

the set

Lc = {(c , τ) ∈ FNC (QF(Σ)) | sign(�τ1) = . . . = sign(�τξ)}.
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Connectedness of linear slices Lc

Figure: The linear slice Lc when c = 1, 2, 4, 5, 10, 20.
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Connectedness of linear slices Lc

Figure: The overlapping of the linear slices Lc when
c = 1, 2, 3, 4, 5, 10, 20.
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