Plumbing Constructions in Quasifuchsian Space.

Sara Maloni

University of Warwick, University of Toulouse

August 8, 2012

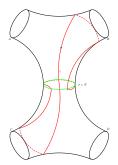
Table of content

- Dehn-Thurston coordinates
- 2 Maskit embedding and pleating ray
- Gluing construction
- Main theorems
- 5 Other slices of Quasifuchsian Space

Dehn-Thurston coordinates

Given a pants decomposition $\mathcal{P} = \{\sigma_1, \dots, \sigma_{\xi}\}$ on a surface Σ , Dehn defined an injection $\mathbf{i} : \mathcal{S} = \mathcal{S}(\Sigma) \longrightarrow \mathbb{Z}_{\geqslant 0}^{\xi} \times \mathbb{Z}^{\xi}$ by $\mathbf{i}(\gamma) = (q_1(\gamma), \dots, q_{\xi}(\gamma); \operatorname{tw}_1(\gamma), \dots, \operatorname{tw}_{\xi}(\gamma)).$

- **1** $q_i(\gamma) = i(\gamma, \sigma_i) \in \mathbb{Z}_{\geq 0}$ are the **length parameters**;
- ② $tw_i(\gamma) \in \mathbb{Z}$ are the **twist parameters** of γ .



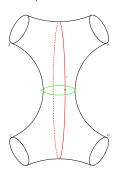


Figure: Penner and Harer twist $\hat{p}_i = -1$ and D. Thurston's twist $p_i = 0$.

Relation between \hat{p}_i and p_i

Suppose two pairs of pants meet along $\sigma = E \in \mathcal{PC}$. Label their respective boundary curves (A, B, E) and (C, D, E) in clockwise order.

Theorem (M–Series)

Let $\gamma \in S$ and let \hat{p}_i and p_i denote the PH-twist and the DT-twist around σ . Then

$$\hat{p}_i = \frac{p_i + I(A, E; B) + I(C, E; D) - q_i}{2},$$

where I(X, Y; Z) denotes the number of strands of $\gamma \cap P$ running from the boundary curve X to the boundary curve Y in the pair of pants P = (X, Y, Z).

Thurston's symplectic form

Let τ_{Th} be Thurston symplectic form on $\mathcal{S} \subset \mathrm{ML}_{\mathbb{Q}}(\Sigma)$.

Theorem (M.)

Suppose that loops $\gamma, \gamma' \in \mathcal{S}$ belongs to the same chart and let $\mathbf{i}(\gamma) = (q_1, \dots, q_{\xi}; p_1, \dots, p_{\xi}), \mathbf{i}(\gamma') = (q'_1, \dots, q'_{\xi}; p'_1, \dots, p'_{\xi})$ their DT coordinates. Then

$$au_{\mathrm{Th}}(\gamma,\gamma')=rac{1}{2}\sum_{i=1}^{\xi}(q_ip_i'-q_i'p_i).$$

In addition, if γ, γ' are disjoint, then $\tau_{Th}(\gamma, \gamma') = 0$.

Basic definitions on Kleinian groups

 $\mathrm{PSL}(2,\mathbb{C})$ acts on \mathbb{H}^3 by isometries and on $\hat{\mathbb{C}}=\mathbb{C}\cup\infty$ by conformal maps.

Definition

- A **Kleinian group** G is a discrete (torsion-free) subgroup of $PSL(2, \mathbb{C})$.
- The **limit set** $\Lambda(G)$ is the set of accumulation points of the action of G on $\hat{\mathbb{C}}$.
- The **regular set** $\Omega(G)$ is $\hat{\mathbb{C}} \Lambda(G)$.
- A **Fuchsian group** is a discrete subgroup of $PSL(2, \mathbb{R})$, or, equivalently, a Kleinian group G such that $\Lambda(G)$ is a circle.
- A Quasifuchsian group is a Kleinian group G such that $\Lambda(G)$ is a topological circle, or, equivalently, a quasi-conformal deformation of a Fuchsian group.

The Maskit embedding

The **Maskit slice** \mathcal{M} is the set of representations $\rho: \pi_1(\Sigma) \longrightarrow PSL(2,\mathbb{C})$ (up to conjugation in $PSL(2,\mathbb{C})$) such that:

- $G_{\rho} = \rho(\pi_1(\Sigma))$ is discrete and ρ is an isomorphism,
- **3** all components of $\Omega(G)$ are simply connected and there is exactly one invariant component $\Omega^+(G)$,
- $\Omega^+(G)/G$ is homeomorphic to Σ and the other components are triply punctured spheres.

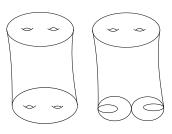


Figure: Quasifuchsian Group and Maskit Group.

Picture of the Maskit embedding for the once punctured torus $\Sigma_{1.1}$

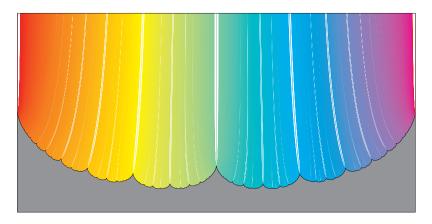
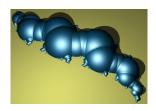


Figure: The Maskit embedding $\mathcal{M}(\Sigma_{1,1})$ for the once punctured torus. Picture courtesy David Wright.

DT coordinates Maskit embedding Gluing construction Main theorems Other slices

Pleating Ray

A **pleated surface** is a a hyperbolic surface which is totally geodesic almost everywhere and such that the locus of points where it fails to be totally geodesic is a geodesic lamination.



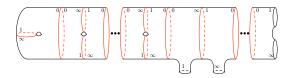
By Thurston, each component of the boundary $\partial C(G)/G$ of the **convex core** is a pleated surface.

Given $\rho \in \mathcal{M}$, denote $\beta(\rho) \in \mathrm{ML}(\Sigma)$ the bending lamination of $\partial \mathcal{C}^+/G_\rho$, where $G_\rho = \rho\left(\pi_1(\Sigma)\right)$.

Given $[\eta] \in \mathrm{PML}(\Sigma)$, the **pleating ray** $\mathcal{P} = \mathcal{P}_{[\eta]}$ of $[\eta]$ is the set of elements $\rho \in \mathcal{M}$ for which $\beta(\rho) \in [\eta]$.

Gluing construction

Let Σ be a surface with $\chi(\Sigma) < 0$ and let $\mathcal{PC} = \{\sigma_1, \ldots, \sigma_{\xi}\}$ be a pants decomposition on it. Let $\mu = (\mu_1, \ldots, \mu_{\xi}) \in \mathbb{H}^{\xi}$.



STEP 1: Any triply punctured sphere is isometric to $\mathbb{P}=\mathbb{H}/\Gamma$, where

$$\Gamma = \left\langle \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \right\rangle.$$

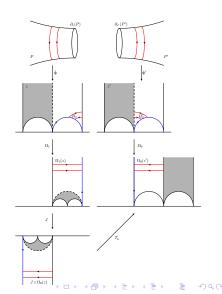
Identify any P_i to the fundamental domain Δ of Γ by the homeomorphisms

$$\Phi_i : \operatorname{int}(P_i) \longrightarrow \Delta.$$

STEP 2: Let $\sigma_i = \partial_{\epsilon} P \cap \partial_{\epsilon'} P'$, then the gluing is described by

$$\Omega_{\epsilon}^{-1}J^{-1}T_{\mu_{i}}^{-1}\Omega_{\epsilon'}$$

where $\mu_i \in \mathbb{H}$ is the **gluing** parameter and $\Omega_{\infty} = \operatorname{Id}$, $\Omega_0 = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$, $\Omega_1 = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$, $J = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$, $J = \begin{pmatrix} 1 & \mu_i \\ 0 & 1 \end{pmatrix}$.



Projective structure

This describes a (complex) projective structure on Σ , which depends on the gluing parameter $\underline{\mu}=(\mu_1,\ldots,\mu_\xi)\in\mathbb{H}^\xi$. In particular, given $\underline{\mu}\in\mathbb{H}^\xi$, we define a developing map $\mathrm{Dev}_{\underline{\mu}}\colon\thinspace\tilde{\Sigma}\longrightarrow\hat{\mathbb{C}}$ and a holonomy map $\rho_{\underline{\mu}}\colon\thinspace\pi_1(\Sigma)\longrightarrow\mathit{PSL}(2,\mathbb{C})$.

Theorem (M–Series)

If $\operatorname{Dev}_{\underline{\mu}} \colon \widetilde{\Sigma} \longrightarrow \widehat{\mathbb{C}}$ is an embedding, then $\rho_{\underline{\mu}}$ is a group isomorphism and $\rho_{\mu} \in \mathcal{M}$.

In addition, these representations ρ_{μ} parametrise \mathcal{M} .

Top Terms' Formula

Let $\rho_{\underline{\mu}} \colon \pi_1(\Sigma) \longrightarrow PSL(2,\mathbb{C})$ be the holonomy described by the gluing construction. Let γ be a simple closed curve on Σ , not parallel to any of the pants curves σ_i .

Theorem (Top Terms' Formula, M – Series)

$$\operatorname{Tr} \rho_{\underline{\mu}}(\gamma) = \pm i^{q} 2^{h} \left(\mu_{1} + \frac{(p_{1} - q_{1})}{q_{1}} \right)^{q_{1}} \cdots \left(\mu_{\xi} + \frac{(p_{\xi} - q_{\xi})}{q_{\xi}} \right)^{q_{\xi}} + R,$$

where

- $q = \sum_{i=1}^{\xi} q_i > 0$;
- R represents terms with total degree in $\mu_1 \cdots \mu_{\xi}$ at most q-2;
- $h = h(\gamma)$ is the total number of waves.

Asymptotic direction of pleating rays

Theorem (Asymptotic direction, M, Series, Keen–Series)

Suppose that $\eta = \sum_{i=1}^{\xi} a_i \gamma_i$ is an **admissible** measured lamination on Σ . Then, as the bending measure $\beta(G_{\underline{\mu}}) \in [\eta]$ tends to zero, the pleating ray $\mathcal{P}_{[\eta]}$ in \mathcal{M} approaches the line

$$\Re \mu_i = -rac{p_i(\eta)}{q_i(\eta)} + 1, \qquad rac{\Im \mu_1}{\Im \mu_j} = rac{q_j(\eta)}{q_1(\eta)},$$

where $(q_1(\eta), \ldots, q_{\xi}(\eta); p_1(\eta), \ldots, p_{\xi}(\eta))$ are the Dehn–Thurston coordinates for η .

Generalised gluing construction

Given a pants decomposition $\mathcal{PC} = \{\sigma_1, \ldots, \sigma_\xi\}$ on Σ , let $\underline{c} = (c_1, \ldots, c_\xi) \in \mathbb{R}_+^\xi$ and $\underline{\mu} = (\mu_1, \ldots, \mu_\xi) \in (\mathbb{C}/2i\pi)^\xi$. We describe a (complex) projective structure on Σ with developing map $\mathrm{Dev}_{\underline{c},\underline{\mu}}$ and holonomy map $\rho_{\underline{c},\underline{\mu}}$. In particular, $\rho_{\underline{c},\underline{\mu}}(\gamma)$ is hyperbolic and $\mathrm{Tr}\,\rho_{c,\mu}(\gamma) = \pm 2\cosh(c_j)$.

Theorem (M.)

If
$$\underline{c} \longrightarrow \underline{0}$$
 keeping $\underline{\mu}$ fixed, where $\mu_i = \frac{i\pi - \mu_i}{c_i}$, then

$$\rho_{\underline{c},\underline{\mu}} \longrightarrow \rho_{\underline{\mu}}.$$

Linear slices \mathcal{L}_c

Given $\mathcal{PC} = \{\sigma_1, \dots, \sigma_{\xi}\}$, the complex Fenchel–Nielsen coordinates $\mathrm{FN}_{\mathbb{C}} \colon \mathcal{QF}(\Sigma) \longrightarrow (\mathbb{C}_+/2i\pi)^{\xi} \times (\mathbb{C}/2i\pi)^{\xi}$ are defined by

$$FN_{\mathbb{C}}(G) = (\lambda_1, \ldots, \lambda_{\xi}, \tau_1, \ldots, \tau_{\xi}),$$

where λ_i are the *complex length* and τ_i are the *complex twist* of the pants curve σ_i .

Definition

Given $\underline{c} \in \mathbb{R}_+^{\xi}$, we define the \underline{c} -slice (or the linear slice) $\mathcal{L}_{\underline{c}}$ to be the set

$$\mathcal{L}_c = \{(\underline{c},\underline{\tau}) \in \operatorname{FN}_{\mathbb{C}}(\mathcal{QF}(\Sigma)) \mid \operatorname{sign}(\Im \tau_1) = \ldots = \operatorname{sign}(\Im \tau_{\xi})\}.$$

Connectedness of linear slices \mathcal{L}_c

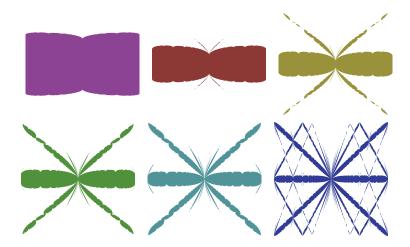
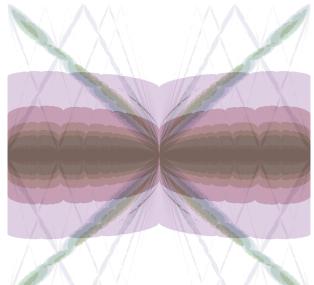


Figure: The linear slice \mathcal{L}_c when c = 1, 2, 4, 5, 10, 20.

Connectedness of linear slices \mathcal{L}_c



End

