Higgs bundles over elliptic curves

Emilio Franco

ICMAT (CSIC-UAM-UCM-UC3M), Madrid, Spain.

July 27, 2012

Introduction

• Joint work with O. Garcia-Prada and P. Newstead.

- PhD Higgs bundles over elliptic curves, study Higgs bundles for different structure groups:
 - Classical complex Lie groups: $GL(n, \mathbb{C})$, $SL(n, \mathbb{C})$, $PGL(n, \mathbb{C})$, $Sp(2m, \mathbb{C})$, $O(n, \mathbb{C})$ and $SO(n, \mathbb{C})$;
 - Real forms of $GL(n, \mathbb{C})$: U(p,q), $U^*(2m)$ and $GL(n, \mathbb{R})$;
 - *G* arbitrary connected complex reductive Lie group.
- In this talk we focus on $G = GL(n, \mathbb{C}) \Longrightarrow$ We work with **vector bundles**.
- Objective of the talk: EXPLICIT DESCRIPTION of the moduli space of Higgs bundles over an elliptic curve with zero degree.
- First explicit description of a moduli space of Higgs bundles.

Elliptic curves

• An elliptic curve is a Riemann surface of genus 1.

- X elliptic curve
 - using Abel-Jacobi we obtain $Jac(X) \cong X$ (the Jacobean Jac(X) is the space of all line bundles over X);
 - Jac(X) abelian group structure (with \otimes) \Longrightarrow abelian group structure on X;
 - the canonical bundle is trivial $K_X \cong \mathcal{O} \cong X \times \mathbb{C}$;
 - also the cotangent bundle is trivial $T^*X \cong X \times \mathbb{C}$.

Moduli space of vector bundles

- We need 3 things for a moduli problem:
 - A =**collection** of holomorphic vector bundles $\mathcal{E} \to X$ (ideally all, but not possible)
 - \sim **relation** between vector bundles $\mathcal{E} \sim \mathcal{E}'$ (ideally \sim would be \cong , but no possible)
 - $\mathbb{E} \to X \times Y$ **family** of vector bundles parametrized by Y (vector bundle over $X \times Y$).
- A (coarse) moduli space M is a variety such that
 - as a set is equal to A/\sim (there exists a bijection $A/\sim \stackrel{1:1}{\longrightarrow} M$)
 - its algebraic structure is given by the families (any family $\mathbb{F} \to X \times Y$ defines an algebraic morphism $\nu_{\mathbb{F}}: Y \to M$)
 - it has some universality property correpresenting this functor

$$Y \longmapsto \begin{cases} (\sim)\text{-equivalence classes of} \\ \text{families parametrized by } Y \end{cases}$$

- Is impossible to construct a (nice, haussdorf) moduli space of vector bundles unless
 - Collection \Longrightarrow *A* is the **collection of all semistable** vector bundles
 - Relation $\Longrightarrow \sim$ is **S-equivalence**

Theorem (Mumford, Seshadri, Narasimham)

There exists a moduli space M(n,d) of S-equivalence classes of semistable vector bundles over a compact Riemann surface.

(Semi)stability and S-equivalence

 \bullet A holomorphic vector bundle ${\cal E}$ is semistable if for every subbundle ${\cal F}\subset {\cal E}$

$$\frac{\deg \mathcal{F}}{\operatorname{rk} \mathcal{F}} \leq \frac{\deg \mathcal{E}}{\operatorname{rk} \mathcal{E}}$$

- \mathcal{E} is **stable** if the above inequality is always strict ($\leq \implies <$)
- \mathcal{E} is **polystable** if

$$\mathcal{E} \cong \bigoplus_i \mathcal{E}_i$$
, with all \mathcal{E}_i stable vector bundles.

ullet (Using the Jordan-Hölder filtration) to **any semistable** $\mathcal E$ vector bundle we can associate a **unique** (**up to isomorphism**) **polystable** vector bundle

 \mathcal{E} semistable $\Longrightarrow \operatorname{gr}(\mathcal{E})$ polystable (associated **graded object** of \mathcal{E}).

- \mathcal{E} and \mathcal{E}' semistable vector bundles are **S-equivalent** if $gr(\mathcal{E}) \cong gr(\mathcal{E}')$.
- On every S-equivalence class there is always a unique polystable (up to isomorphism).

 $Semistability \ / \ S-equivalence \iff Polystability \ / \ isomorphism \cdot$

Atiyah: Vector bundles over an elliptic curve

- [Atiyah 1957] *Vector bundles over elliptic curves*. Beautiful paper before GIT and moduli theory (see [Tu 1993] for stability considerations).
- Atiyah gives a complete description of vector bundles of any rank and degree but, to simplify this talk, we will focus on the case of degre d = 0.

Proposition (Atiyah)

(Over an elliptic curve) the only stable vector bundles of degree 0 are those of rank 1 (line bundles $\mathcal{L} \in Jac(X)$).

Corollary

(Over an elliptic curve) \mathcal{E} is a polystable vector bundle of degree 0 if and only if $\mathcal{E} \cong \bigoplus_i \mathcal{L}_i$, where $\mathcal{L}_i \in Jac(X)$.

- \mathbb{L} family of all line bundles of degree 0 parametrized by $X \cong \operatorname{Jac}(X)$.
- \mathbb{E} family of all polystable bundles parametrized by $X \times .^n . \times X$ (*n* copies of \mathbb{L})
- Moduli theory $\Longrightarrow \mathbb{E}$ induces a morphism $(X \times \stackrel{\cdot}{\dots} \times X) \to M(n,0)$. It factors through

$$\operatorname{Sym}^n X \xrightarrow{\cong} M(n,0).$$

A priori this is only a bijective morphism, it is an **isomorphism** since M(n,0) is smooth (see LePotier's book).

Higgs bundles

- A **Higgs bundle** over the elliptic curve *X* a pair (\mathcal{E}, φ) , where
 - \mathcal{E} is a **vector bundle** over X
 - the Higgs field φ is an **endomorphism** of the vector bundle ($\varphi \in H^0(X, \operatorname{End} \mathcal{E})$) (when g > 1 $\varphi \in H^0(X, \operatorname{End} \mathcal{E} \otimes K_X)$ but recall that K_X is trivial in genus g = 1)
- Moduli problem fo Higgs bundles:
 - A = collection of semistable Higgs bundles of rank n and degree d over elliptic curve X.
 - \sim = S-equivalence
 - Usual definition of families $\widetilde{\mathbb{F}} = (\mathbb{F}, \Phi)$ where $\mathbb{F} \to X \times Y$ family of vector bundles and $\Phi \in H^0(X \times Y, \operatorname{End} \mathbb{F})$.

Theorem (Hitchin, Simpson, Nitsure)

There exists a coarse moduli space of Higgs bundles $\mathcal{M}(n,d)$ for the above moduli problem.

(Semi)stability and S-equivalence for Higgs bundles

- The Higgs bundle (\mathcal{E}, φ) is
 - **semistable** if for any subbundle $\mathcal F$ such that $\varphi(\mathcal F)\subset \mathcal F$

$$\frac{\deg \mathcal{F}}{\operatorname{rk} \mathcal{F}} \leq \frac{\deg \mathcal{E}}{\operatorname{rk} \mathcal{E}},$$

- **stable** if the above inequality is strict (<) for any subbundle \mathcal{F} such that $\varphi(\mathcal{F}) \subset \mathcal{F}$
- polystable if

$$(\mathcal{E}, \varphi) \cong \bigoplus_{i} (\mathcal{E}_i, \varphi_i),$$
 where $(\mathcal{E}_i, \varphi_i)$ are stable Higgs bundles.

• (Using the Jordan-Hölder filtration) to any semistable (\mathcal{E}, φ) Higgs bundle we can associate a unique (up to isomorphism) polystable Higgs bundle

$$(\mathcal{E},\varphi) \text{ semistable } \Longrightarrow \operatorname{gr}(\mathcal{E},\varphi) \text{ polystable} \qquad \text{(associated } \operatorname{\textbf{graded object}} \text{ of } (\mathcal{E},\varphi)).$$

- (\mathcal{E}, φ) and (\mathcal{E}', φ') semistable Higgs bundles are **S-equivalent** if $gr(\mathcal{E}, \varphi) \cong gr(\mathcal{E}', \varphi')$.
- On every S-equivalence class there is always a unique polystable (up to isomorphism).

Semistability / S-equivalence ← Polystability / isomorphism.

Stability of Higgs bundles in terms of the underlying vector bundle

• We are lucky:

Proposition

(Over an elliptic curve) (\mathcal{E}, φ) semistable Higgs bundle $\iff \mathcal{E}$ semistable vector bundle.

• Very lucky indeed:

Proposition

(Over an elliptic curve) (\mathcal{E}, φ) stable Higgs bundle $\iff \mathcal{E}$ stable vector bundle.

• Everything is so easy:

Corollary

(Over an elliptic curve) a Higgs bundle of degree 0 (\mathcal{E}, φ) is polystable if and only if

$$(\mathcal{E}, \varphi) \cong \bigoplus^n (\mathcal{L}_i, \phi_i), \qquad \mathcal{L}_i \in \operatorname{Jac}(X) \quad \text{ and } \quad \phi_i \in H^0(\operatorname{End} \mathcal{L}_i) \cong H^0(\mathcal{O}) \cong \mathbb{C}.$$

First attempt

- ullet $\widetilde{\mathbb{L}}$ family of **all line Higgs bundles** parametrized by $T^*X \cong X \times \mathbb{C} \cong \operatorname{Jac}(X) \times H^0(\mathcal{O})$.
- $\widetilde{\mathbb{E}}$ family of **all polystable Higgs bundles** of deg = 0 parametrized by $T^*X \times .^n \cdot \times T^*X$ (*n* copies of $\widetilde{\mathbb{L}}$).
- Moduli theory $\Longrightarrow \widetilde{\mathbb{E}}$ induces a morphism $(T^*X \times .^n. \times T^*X) \longrightarrow \mathcal{M}(n,0)$. It factors through a bijective morphism

$$\operatorname{Sym}^n T^*X \xrightarrow{1:1} \mathcal{M}(n,0)$$

- If the target of a bijection is normal, it is an isomorphism (by Zariski's Main Theorem).
- But...

First attempt

- ullet $\widetilde{\mathbb{L}}$ family of **all line Higgs bundles** parametrized by $T^*X \cong X \times \mathbb{C} \cong \operatorname{Jac}(X) \times H^0(\mathcal{O})$.
- $\widetilde{\mathbb{E}}$ family of **all polystable Higgs bundles** of deg = 0 parametrized by $T^*X \times .^n \cdot \times T^*X$ (*n* copies of $\widetilde{\mathbb{L}}$).
- Moduli theory $\Longrightarrow \widetilde{\mathbb{E}}$ induces a morphism $(T^*X \times .^n. \times T^*X) \longrightarrow \mathcal{M}(n,0)$. It factors through a bijective morphism

$$\operatorname{Sym}^n T^*X \xrightarrow{1:1} \mathcal{M}(n,0)$$

- If the target of a bijection is normal, it is an isomorphism (by Zariski's Main Theorem).
- But... normality of $\mathcal{M}(n,0)$ for elliptic curves (g=1) is an open question. (For g>1 we know that $\mathcal{M}(n,0)$ is normal).

Change of strategy

• A family $\widetilde{\mathbb{V}}$ parametrized by Z has the **local universal property** if for **any other family** $\widetilde{\mathbb{F}}$ parametrized by Y and any $y \in Y$, there exists $y \in U \subset Y$ open and $f: U \to Z$ such that

$$f^*\widetilde{\mathbb{V}}\sim \widetilde{\mathbb{F}}|_U.$$

- From Moduli theory: Suppose $\widetilde{\mathbb{V}}$ parametrized by Z has the local universal property, Γ group acting on Z such that $\widetilde{\mathbb{V}}_{z_1} \sim \widetilde{\mathbb{V}}_{z_2} \Longleftrightarrow z_2 = \gamma \cdot z_1$ for some $\gamma \in \Gamma$. Then, a categorical quotient of Z by Γ is a coarse moduli space if and only if it is an orbit space.
- Using $\widetilde{\mathbb{E}}$ we have $Z = T^*X \times .^n . \times T^*X$ and $\Gamma = \mathfrak{S}_n$ the symmetric group. Since \mathfrak{S}_n is finite $Z/\Gamma = \operatorname{Sym}^n T^*X$ is always an orbit space.
- \bullet Problem: $\widetilde{\mathbb{E}}$ doesn't have the local universal property (too many families $\widetilde{\mathbb{F}}).$

A new moduli problem

- We change the moduli problem:
 - A =collection of semistable Higgs bundles (unchanged)
 - \sim = S-equivalence $((\mathcal{E}_1, \varphi_1) \sim (\mathcal{E}_2, \varphi_2) \iff \operatorname{gr}(\mathcal{E}_1, \varphi_1) \cong \operatorname{gr}(\mathcal{E}_2, \varphi_2))$ (unchanged)
 - New definition of families. A family of Higgs bundles $\widetilde{\mathbb{F}} = (\mathbb{F}, \Phi)$ parametrized by Y is **locally graded** if for every $y \in Y$ there exists $y \in U \subset Y$ open and $\widetilde{\mathbb{L}}_1, \dots, \widetilde{\mathbb{L}}_n$ families of line Higgs bundles, such that

$$\widetilde{\mathbb{F}}|_{U}\sim igoplus_{i=1}^{n}\widetilde{\mathbb{L}}_{i}.$$

Proposition

 $\widetilde{\mathbb{E}}$ has the local universal property among locally graded families.

Theorem

There exists a coarse moduli space $\mathcal{N}(n,d)$ for the new moduli problem, and

$$\mathcal{N}(n,0) \cong \operatorname{Sym}^n T^*X$$
.

There exists a bijection $\mathcal{N}(n,0) \xrightarrow{1:1} \mathcal{M}(n,0)$ and furthermore $\mathcal{N}(n,0)$ is the normalization of $\mathcal{M}(n,0)$.

Hitchin fibration

 \bullet Hitchin 1987, evaluating the invariant homogeneus polynomials P_1,\dots,P_n on the Higgs field

$$h: \mathcal{M}(n,d) \longrightarrow B = \bigoplus_i H^0(X, K^{\otimes \deg P_i})$$

$$(\mathcal{E},\varphi) \longmapsto (P_1(\varphi),\ldots,P_n(\varphi))$$

in our case

• $p^{-1}\left([\lambda_1, \stackrel{m_1}{\dots}, \lambda_1, \dots, \lambda_\ell, \stackrel{m_\ell}{\dots}, \lambda_\ell]_{\mathfrak{S}_n}\right) \cong \operatorname{Sym}^{m_1} X \times \dots \times \operatorname{Sym}^{m_\ell} X$, so

Corollary

The generic Hitchin fibre (all $m_i = 1$) is the abelian variety $X \times .^n . \times X$. The non-generic fibre is a holomorphic fibration over the abelian variety $X \times .^\ell . \times X$ with fibre $\mathbb{P}^{(m_1-1)} \times .^\ell . \times \mathbb{P}^{(m_\ell-1)}$.

Nice picture

- By the result on semistability, there exists a projection $\mathcal{N}(n,d) \stackrel{a}{\longrightarrow} M(n,d)$.
- Two important maps

• easy in our case

• Let $\widetilde{M}(n,0)$ and $\widetilde{\mathcal{N}}(n,0)$ be the orbifolds given by the quotients $(X \times .^n. \times X) / \mathfrak{S}_n$ and $(T^*X \times .^n. \times T^*X) / \mathfrak{S}_n$, we have that

$$\widetilde{\mathcal{N}}(n,0)\cong\mathcal{T}^*\widetilde{M}(n,0)$$

where \mathcal{T}^* denotes the cotangent orbifold bundle.

日 医水面 医水道 医水道区