Hyperbolic geometry in higher Teichmüller theory

Bill Dreyer

University of Southern California/Notre Dame

GEAR Retreat 2012

Urbana-Champaign, Illinois

August 6th

Purpose of this talk

Let S be a closed, connected, oriented surface with $\chi(S) < 0$.

Consider the character variety

$$\mathcal{R}_{\mathrm{PSL}_n(\mathbb{R})}(S) = \mathrm{Hom}\big(\pi_1(S), \mathrm{PSL}_n(\mathbb{R})\big) / / \mathrm{PSL}_n(\mathbb{R})$$

when n > 2.

We are interested in studying *geometrically* representations lying in the **Hitchin space** $\mathcal{H}_{\mathrm{PSL}_n(\mathbb{R})}(S)$, which is the connected component of $\mathcal{R}_{\mathrm{PSL}_n(\mathbb{R})}(S)$ containing a copy of the **Teichmüller space** $\mathcal{T}(S)$.

Two (geometric!) approaches

- i) Anosov representation (Labourie)
- ii) Positive representation (Fock-Goncharov)

Both approaches yield the existence of a certain **equivariant boundary curve**.

Theorem (Labourie, Fock-Goncharov)

Let $\rho: \pi_1(S) \to \mathrm{PSL}_n(\mathbb{R})$ be a Hitchin representation. There exists a unique, positive, continuous ρ -equivariant flag curve

$$\mathcal{F}_{\rho}: \partial_{\infty}\widetilde{S} \to \operatorname{Flag}(\mathbb{R}^n).$$

One property highly reminiscent of Teichmüller representations...

Theorem (Labourie, Fock-Goncharov)

Every Hitchin/Anosov representation $\rho : \pi_1(S) \to \mathrm{PSL}_n(\mathbb{R})$ is discrete and injective.

Furthermore, for every $\gamma \in \pi_1(S) - \{1\}$, $\rho(\gamma) \in \mathrm{PSL}_n(\mathbb{R})$ diagonalizes, its eigenvalues $\lambda_i^{\rho}(\gamma)$ are all real with distinct absolute values; we index them such that

$$|\lambda_1^{\rho}(\gamma)| > \cdots > |\lambda_n^{\rho}(\gamma)|$$
.

Outline

- 1 Length functions for Anosov representations
- 2 Cataclysm deformations of Anosov representations

3 Parametrizing the Hitchin space

Length functions for Anosov representations

Case n = 2: Thurston's length function ℓ_m

Given $m \in \mathcal{T}(S)$, there exists a continuous, homogeneous function

$$\ell_m:\mathcal{ML}(S)\to\mathbb{R}^+$$

where $\mathcal{ML}(S)$ is the space of measured laminations on S.

Length functions for Anosov representations

Case n = 2: Thurston's length function ℓ_m

Given $m \in \mathcal{T}(S)$, there exists a continuous, homogeneous function

$$\ell_m:\mathcal{ML}(S)\to\mathbb{R}^+$$

where $\mathcal{ML}(S)$ is the space of measured laminations on S.

Interesting features

Very nice (full) invariant of $m \in \mathcal{T}(S)$, which detects earthquake/stretching/grafting deformations, differentiability properties, can be used to parametrize $\mathcal{T}(S)$ via shearing coordinates, compactification of $\mathcal{T}(S)$, etc...

Case "n = n": Length functions ℓ_i^{ρ}

Let

$$\mathcal{C}^{\mathrm{Hol}}(S) = \left\{ egin{array}{l} \mathsf{Transverse} \ \mathsf{H\"{o}lder} \ \mathsf{distributions} \ \mathsf{for} \ \mathsf{the} \ \mathsf{geodesic} \ \mathsf{foliation} \ \mathsf{on} \ \mathcal{T}^1 S \ \mathsf{foliation} \$$

 $\mathcal{C}^{\mathrm{Hol}}(S)$ is the (vector) space of Hölder geodesic currents on S.

Fact

$$\left\{ \mathsf{conjugacy} \ \mathsf{classes} \ \bar{\gamma} \ \mathsf{of} \ \pi_1(\mathcal{S}) - \{1\} \right\} \subset \mathcal{C}^{\mathrm{Hol}}(\mathcal{S}) \supset \mathcal{ML}(\mathcal{S})$$

Let $\rho: \pi_1(S) \to \mathrm{PSL}_n(\mathbb{R})$ be an Anosov representation.

Theorem (D.)

There exist n linear functions $\ell_i^{\rho}: \mathcal{C}^{\mathrm{Hol}}(S) \to \mathbb{R}$ such that for every closed geodesic $\bar{\gamma} \in \mathcal{C}^{\mathrm{Hol}}(S)$,

$$\ell_i^{\rho}(\bar{\gamma}) = \log |\lambda_i^{\rho}(\gamma)|.$$

Furthermore, for every current $\alpha \in C^{\text{Hol}}(S)$,

- i) $\sum_{i=1}^{n} \ell_i^{\rho}(\alpha) = 0;$
- ii) $\ell_i^{\rho}(R^*\alpha) = -\ell_{n-i+1}^{\rho}(\alpha)$

where $R: T^1S \to T^1S$ is defined the involution by R(u) = -u.

The function ℓ_i^{ρ} is the *i*-th length of the Anosov representation ρ .

Length functions for Anosov representations Cataclysm deformations of Anosov representations Parametrizing the Hitchin space

Features and applications of the lengths $\ell_{\rm i}^{ ho}$

• Differentiability properties → Asymptotic estimates;

Features and applications of the lengths $\ell_{\rm i}^{ ho}$

- Differentiability properties → Asymptotic estimates;
- May detect some information about a possible shearing coordinate system on the Hitchin space $\mathcal{H}_{\mathrm{PSL}_n(\mathbb{R})}(S)$;

Californian deformations of Anosov representations

Let λ be a maximal geodesic lamination in S.

 $S - \lambda$ is made of ideal triangles \rightsquigarrow "Ideal triangulation" of S.

A **cataclysm** is a deformation consisting of shearing the ideal triangles contained in the complement $S - \lambda$ along the leaves of the geodesic lamination λ .

 \rightsquigarrow This modifies the "gluing" of the ideal triangles along λ .

"The Big One" Theorem

Let $\rho: \pi_1(S) \to \mathrm{PSL}_n(\mathbb{R})$ be an Anosov representation.

 $\mathcal{C}^{\mathrm{twist}}(\widehat{\lambda})$ is the (vector) space of *n*–twisted currents for $\widehat{\lambda} \subset T^1S$.

Theorem (D.)

There exist an open neighborhood $0 \in \mathcal{U}^{\rho} \subset \mathcal{C}^{\mathrm{twist}}(\widehat{\lambda})$ and a continuous, injective map

$$egin{array}{lll} \Lambda: \mathcal{U}^{
ho} &
ightarrow & \mathcal{R}^{\mathrm{Anosov}}_{\mathrm{PSL}_{n}(\mathbb{R})}(\mathcal{S}) \ arepsilon & = (arepsilon_{1}, \ldots, arepsilon_{n}) &
ightarrow & \Lambda^{arepsilon}
ho \end{array}$$

such that $\Lambda^0 \rho = \rho$.

The Anosov representation $\Lambda^{\varepsilon}\rho$ is the cataclysm deformation of ρ of magnitude $\varepsilon \in \mathcal{C}^{\mathrm{twist}}(\widehat{\lambda})$.

Some remarks

• The construction of cataclysms makes use of the associated flag curve $\mathcal{F}_{\rho}: \partial_{\infty}\widetilde{S} \to \operatorname{Flag}(\mathbb{R}^n)$;

$$\leadsto$$
 Flag decorated lamination $\widetilde{\lambda}^{\mathcal{F}_{\rho}}$

- They should be understood as a deformation of the flag curve F_ρ: ∂_∞S → Flag(ℝⁿ);
- When n = 3: cataclysms include bending deformations of real convex projective structures on S introduced by B.
 Goldman.

Variation of the lengths ℓ_i^{ρ}

Let $\mathcal{C}^{\mathrm{Hol}}(\widehat{\lambda})$ be the (vector) space of Hölder geodesic currents for $\widehat{\lambda}$.

Let $\tau: \mathcal{C}^{\mathrm{Hol}}(\widehat{\lambda}) \times \mathcal{C}^{\mathrm{Hol}}(\widehat{\lambda}) \to \mathbb{R}$ be Thurston's intersection number.

Theorem (D.)

Let ℓ_i^{ρ} and $\ell_i^{\rho'}$ be the i-th lengths associated with ρ and $\rho' = \Lambda^{\varepsilon} \rho$, respectively. For every current $\alpha \in \mathcal{C}^{\mathrm{Hol}}(\widehat{\lambda})$,

$$\ell_i^{\rho'}(\alpha) = \ell_i^{\rho}(\alpha) + \tau(\alpha, \varepsilon_i).$$

 \rightsquigarrow The lengths ℓ_i^{ρ} detect cataclysm deformations.

Features and applications of the lengths $\ell_{\rm i}^{ ho}$

- Differentiability properties → Asymptotic estimates;
- May detect some information about a possible shearing coordinate system on the Hitchin space $\mathcal{H}_{\mathrm{PSL}_n(\mathbb{R})}(S)$;

Features and applications of the lengths $\ell_{\rm i}^{ ho}$

- Differentiability properties \rightsquigarrow Asymptotic estimates;
- May detect some information about a possible shearing coordinate system on the Hitchin space $\mathcal{H}_{\mathrm{PSL}_n(\mathbb{R})}(S)$;
- Detect cataclysm deformations → Shear invariants...?;

Parametrizing the Hitchin space

Using Higgs bundle techniques, N. Hitchin proved the following result.

Theorem (Hitchin)

The Hitchin space $\mathcal{H}_{\mathrm{PSL}_n(\mathbb{R})}(S)$ is homeomorphic to $\mathbb{R}^{(n^2-1)(2g-2)}$.

We would like to recover the above result using the *intrinsic* geometry of Hitchin representations.

Length functions for Anosov representations Cataclysm deformations of Anosov representations Parametrizing the Hitchin space

This is a Higgs bundle free space.

Thurston-Fock-Goncharov's philosophy...

We would like to obtain a parametrization of the Hitchin space $\mathcal{H}_{\mathrm{PSL}_n(\mathbb{R})}(S)$ "à la Thurston-Fock-Goncharov", where the first half of the coordinates are the **lengths** $\{\ell_i\}_i$ and the second half are some **triangle invariants** $\{X_{abc}^T\}_i$, namely

$$\mathcal{H}_{\mathrm{PSL}_n(\mathbb{R})}(S)\ni\rho\mapsto\left(\begin{array}{cc} \underbrace{\ell_1^\rho\;,\;\ldots\;,\;\ell_n^\rho} \\ \end{array}\right.,\underbrace{\{X_{abc}^{T_1}(\rho)\},\ldots,\{X_{abc}^{T_{4g-4}}(\rho)\}}\right)$$
 Shear invariants Triangle invariants

Flag decorated triangles

Let ρ be a Hitchin representation along with its flag curve \mathcal{F}_{ρ} .

Fact (Fock-Goncharov)

$$\mathcal{F}_{\rho}:\partial_{\infty}\widetilde{\mathcal{S}} \to \operatorname{Flag}(\mathbb{R}^n)$$
 is **positive**.

In particular, for every $T \subset \widetilde{S} - \widetilde{\lambda}$, the **geometry of each flag** decorated triangle $T^{\mathcal{F}_{\rho}}$ is determined by (n-1)(n-2)/2 positive numbers $\{X_{abc}^T(\rho)\}_{a+b+c=n}$ called triangle invariants.

A careful analysis of the dimension

Fact (D.)

Cataclysms are deformations of dimension $(n-1)(6g-6) + \lfloor \frac{n-1}{2} \rfloor$ which **preserve the geometry of the flag decorated triangles**.

• Shear dimension (at least):

$$(n-1)(6g-6)+\left\lfloor \frac{n-1}{2}\right
floor;$$

A careful analysis of the dimension

Fact (D.)

Cataclysms are deformations of dimension $(n-1)(6g-6) + \lfloor \frac{n-1}{2} \rfloor$ which **preserve the geometry of the flag decorated triangles**.

• Shear dimension (at least):

$$(n-1)(6g-6)+\left\lfloor \frac{n-1}{2}\right\rfloor;$$

• Triangle dimension (expected):

$$\underbrace{ \begin{pmatrix} 4g-4 \end{pmatrix}}_{\text{\# triangles in } S-\lambda} \quad \times \quad \underbrace{ \frac{(n-1)(n-2)}{2}}_{\text{\# triangle invariants per flag decorated triangle } T^{\xi}}_{\text{}}.$$

Shear dim. + Triangle dim. =
$$(2g-2)(n^2-1) + \left\lfloor \frac{n-1}{2} \right\rfloor$$

> dim. of $\mathcal{H}_{\mathrm{PSL}_n(\mathbb{R})}(S)$

Shear dim. + Triangle dim. =
$$(2g-2)(n^2-1) + \left\lfloor \frac{n-1}{2} \right\rfloor$$

> dim. of $\mathcal{H}_{\mathrm{PSL}_n(\mathbb{R})}(S)$

 \rightarrow Something's wrong with these triangle invariants $\{\{X_{abc}^T\}\}...$

Shear dim. + Triangle dim. =
$$(2g-2)(n^2-1) + \left\lfloor \frac{n-1}{2} \right\rfloor$$

> dim. of $\mathcal{H}_{\mathrm{PSL}_n(\mathbb{R})}(S)$

 \rightarrow Something's wrong with these triangle invariants $\{\{X_{abc}^T\}\}...$

Theorem (Bonahon, D.)

There are $\lfloor \frac{n-1}{2} \rfloor \mathbb{Z}$ -linear relations in the $\{\{\log X_{abc}^T\}\}_{T \subset S - \lambda}$.

As a result, the triangle dimension is

$$(4g-4) \times \frac{(n-1)(n-2)}{2} - \left| \frac{n-1}{2} \right|.$$

Features and applications of the lengths $\ell_{\mathsf{i}}^{ ho}$

- Differentiability properties → asymptotic estimates;
- Detect some information about a possible shearing coordinate system on the Hitchin space $\mathcal{H}_{\mathrm{PSL}_n(\mathbb{R})}(S)$;
- Detect cataclysm deformations → Shear invariants...?;

Features and applications of the lengths $\ell_{\rm i}^{ ho}$

- Differentiability properties → asymptotic estimates;
- Detect some information about a possible shearing coordinate system on the Hitchin space $\mathcal{H}_{\mathrm{PSL}_n(\mathbb{R})}(S)$;
- Detect cataclysm deformations → Shear invariants...?;
- Play a crucial rôle in analysing existing constraints on the triangle invariants {{X^T_{abc}}}_{T⊂S−λ};

"À la Thurston-Fock-Goncharov-Bonahon-D." ...

Let λ be a maximal lamination with finitely many leaves.

Theorem (Bonahon, D.)

The map

$$\Theta_{\lambda}: \mathcal{H}_{\mathrm{PSL}_{n}(\mathbb{R})}(S) \to \mathcal{P}$$

$$\rho \mapsto \left(\sigma_{1}^{\rho}, \dots, \sigma_{n-1}^{\rho}, \{X_{abc}^{T_{1}}(\rho)\}, \dots, \{X_{abc}^{T_{4g-4}}(\rho)\}\right)$$

defines a homeomorphism from the Hitchin space $\mathcal{H}_{\mathrm{PSL}_n(\mathbb{R})}(S)$ onto the interior of a convex polytope $\mathcal{P} \subset \mathbb{R}^N$.

Morevover, \mathcal{P} is a certain bundle over $\mathbb{R}^{(n-1)(n-2)(2g-2)-\left\lfloor\frac{n-1}{2}\right\rfloor}$, whose fibers are homeomorphic to $\mathbb{R}^{(n-1)(6g-6)+\left\lfloor\frac{n-1}{2}\right\rfloor}$.

The shear invariants σ_i^{ρ} are **quasi-currents** for $\hat{\lambda}$.

Features and applications of the lengths $\ell_{\mathsf{i}}^{ ho}$

- Differentiability properties → asymptotic estimates;
- Detect some information about a possible shearing coordinate system on the Hitchin space $\mathcal{H}_{\mathrm{PSL}_n(\mathbb{R})}(S)$;
- Detect cataclysm deformations → Shear invariants...? Nope.;
- Play a crucial rôle in analysing existing constraints on the triangle invariants $\{\{X_{abc}^T\}\}_{T\subset S-\lambda}$;

Features and applications of the lengths $\ell_{\mathbf{i}}^{ ho}$

- Differentiability properties → asymptotic estimates;
- Detect some information about a possible shearing coordinate system on the Hitchin space $\mathcal{H}_{\mathrm{PSL}_n(\mathbb{R})}(S)$;
- Detect cataclysm deformations → Shear invariants...? Nope.;
- Play a crucial rôle in analysing existing constraints on the triangle invariants $\{\{X_{abc}^T\}\}_{T\subset S-\lambda}$;
- Play a crucial rôle in characterizing the image of the parametrization $\Theta_{\lambda}: \mathcal{H}_{\mathrm{PSL}_n(\mathbb{R})}(S) \to \mathcal{P} \subset \mathbb{R}^N$;

Features and applications of the lengths $\ell_{\mathbf{i}}^{ ho}$

- Differentiability properties → asymptotic estimates;
- Detect some information about a possible shearing coordinate system on the Hitchin space $\mathcal{H}_{\mathrm{PSL}_n(\mathbb{R})}(S)$;
- Detect cataclysm deformations → Shear invariants...? Nope.;
- Play a crucial rôle in analysing existing constraints on the triangle invariants $\{\{X_{abc}^T\}\}_{T\subset S-\lambda}$;
- Play a crucial rôle in characterizing the image of the parametrization $\Theta_{\lambda}:\mathcal{H}_{\mathrm{PSL}_n(\mathbb{R})}(S)\to\mathcal{P}\subset\mathbb{R}^N;$
- More to come...

Thanks everyone!

A special thank to Anna, Bill, Stevens, Jayadev, Chris, Richard, Fanny, Spencer, Jeffrey and Roberto.

Please, once again for them: Plaudite cives!