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The fine print

I will try to follow these guidelines, reserving the right to resort to

hand-waving if I get stuck.

• Our 3-manifolds will be smooth. Usually they will be

orientable. I will try to indicate when they may have

boundary. They need not be compact, and will be said to be

closed when they are compact without boundary.

• Surfaces in a 3-manifold M will be piecewise smooth, and

properly embedded (i.e Σ ∩ ∂M = ∂Σ) in the exceptional

case where M has boundary

• Isotopies will be piecewise smooth.



Surgery along a disk

Surgery is a fundamental operation in 3-manifold topology.

Suppose Σ is a surface in M3 and D is a disk embedded in M

with D ∩ Σ = ∂D.

Take a relative regular neighborhood N ∼= D × [−1, 1] with

D × {0} = D and N ∩ Σ = ∂D × [−1, 1]. Trade the annulus

N ∩ Σ for the two disks D × {−1, 1} to obtain a new surface Σ′

by surgery along D.

When the simple closed curve ∂D is not the boundary of a disk in

Σ, the surgery is called a compression. A compression never

produces a sphere.
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Primes and irreducibles

Definition. A 3-manifold M is irreducible if every 2-sphere in M

bounds a 3-ball; and M is prime if every connected sum

decomposition of M has an S3 summand.

This sounds like number theory but it’s different. The identity

element, S3, is prime. All irreducible manifolds are prime, but not

conversely. In fact, S1 × S2 is the unique 3-manifold that is prime

but not irreducible (a non-separating S2 does not bound a ball).

This makes sense for 2-manifolds: S2 and P2 are prime and

irreducible; S1 × S1 is prime but not irreducible; all other surfaces

are neither.

But there are lots of irreducible 3-manifolds. Moreover, every

closed 3-manifold has a unique description as a connected sum of

prime 3-manifolds. (There may be S1 × S2 summands, though,

which are prime but not irreducible.)
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The sphere decomposition

The existence and uniqueness of the prime decomposition of a

3-manifold follows from two theorems from the 1930’s:

Alexander’s Theorem. A 2-sphere embedded in R3 is the

boundary of a ball. (Hence, S3 is irreducible.)

Two disjoint 2-spheres in a 3-manifold M are said to be parallel

when they cobound S2 × [0, 1].

Kneser’s Theorem. For any 3-manifold M there exists NM
such that if S is any family of 2-spheres which are pairwise

disjoint and non-parallel then |S| ≤ NM . (Hence M can have at

most NM non-trivial connected summands.)
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Sketch of Alexander’s Theorem

A modern proof of Alexander’s Theorem can be based on Morse

theory (see Hatcher’s notes).

• Perturb the sphere Σ to be in Morse position.
• Slice by planes Πn that interleave the Morse singularities.

Each component of Πn ∩ Σ is a s.c.c that bounds a disk in

Πn (by the 2D version of this theorem).
• Do surgeries along these disks, from innermost outward. The

resulting surface consists of spheres, trapped between

adjacent planes, which “obviously” bound 3-balls.

• Reverse the sequence of surgeries to reconstruct the

manifold bounded by Σ. At each stage, either some bounded

region is expanded by attaching a 3-ball along a 2-disk, or

reduced by removing a 3-ball attached along a 2-disk. Hence

all of the bounded regions are balls at each stage.
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Sketch of Kneser’s Theorem

Kneser’s method developed into modern “normal surface theory.”

• Triangulate M and make S transverse to the 2-skeleton.

• Use Alexander’s theorem to remove simple closed curves in

∆2 ∩ S by isotopy of S.

• Perform an isotopy to remove “fold arcs”, then repeat the

previous step. This process reduces intersections with the

1-skeleton, so it terminates.

• Each face has at most 4 non-product regions.

• A region of M − S meeting only product regions is either

S3 × [0, 1] or P3 × [0, 1].

• Take N = 4F + dim H1(M;Z2).

Kneser’s theorem gives existence of a prime decomposition. To

prove uniqueness, first remove S1 × S2 summands until no

non-separating 2-spheres remain. Then show that any two

maximal families of pairwise non-parallel spheres are isotopic.
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The torus decomposition

Irreducible compact 3-manifolds admit a canonical decomposition

obtained by cutting along incompressible tori.

Existence and uniqueness depend on the theory of Seifert-fibered

spaces. (See Jaco-Shalen, or Hatcher for the streamlined version

stated here.)

Definition. A compact irreducible 3-manifold M is said to be

atoroidal if every incompressible torus in M is parallel to a

component of ∂M.

Theorem. A compact irreducible 3-manifold M contains a family

T of incompressible tori such that every connected 3-manifold

obtained by cutting M along T is either Seifert-fibered or

atoroidal. Up to isotopy there is a unique family T which is

minimal under inclusion.
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Geometrization

A geometry X is a simply connected analytic Riemannian

manifold having a transitive isometry group with compact

point-stabilizers. (E.g. H3.)

An X -structure on a manifold is an

atlas of charts mapping into X such that the transition maps

extend to isometries of X .

William Thurston identified eight 3-dimensional geometries and

conjectured:

Geometrization Theorem. A closed irreducible 3-manifold M

contains a family T of disjoint incompressible tori, unique up to

isotopy, such that each component of M − T admits a complete

geometric structure.

Most cases were proved by Thurston, and the rest by Perelman.

Note that the analogous statement holds in dimension 2, with no

irreducibility assumption and no decomposition.

Among the eight geometries, the hyperbolic structures are

generic. Non-hyperbolic geometric 3-manifolds are classified.
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Developing maps

Suppose M has an X -structure. Fix basepoints m ∈ M and

x ∈ X , and a chart φ with φ(m) = x .

By “analytic continuation” of φ, any smooth path in M starting

at m lifts to a smooth path in X starting at x . Homotopic paths

have homotopic lifts. If we fix a basepoint m̃ lying over m in the

universal cover M̃, then we obtain a unique developing map

D : (M̃, m̃)→ (X , x) so that, for any path σ starting at m, if σ̃ is

the lift of σ to (M̃, m̃), then D ◦ σ is the lift of σ to (X , x).

The developing map D determines a holonomy representation

ρ : π1(M)→ Isom+(X ) such that D is equivariant with respect to

the standard action of π1(M,m) on M̃ and the action on X given

by ρ.

Theorem. An X -structure defines a complete metric on M if and

only if its developing map is a diffeomorphism D : M̃ → X . In this

case the holonomy representation is discrete.
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Constructing Hyperbolic 3-manifolds

It isn’t hard to build complete hyperbolic 3-manifolds; the

complement of a generic link in S3 is hyperbolic (with cusps).

First, triangulate the quotient space obtained by identifying each

component of the link to a point. In fact this can be done so that

these points are exactly the vertices. Here is Jeff Weeks’

algorithm.
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Constructing Hyperbolic 3-manifolds

Our triangulation of the pseudo-manifold S3/L is equivalent to a

topological ideal triangulation T of M = S3 − L. The “simplices”

of T are standard simplices with vertices deleted. Lift T to an

equivariant topological ideal triangulation T̃ of M̃.

More generally, take T to be an ideal triangulation of the interior

M of an irreducible 3-manifold N such that ∂N consists of tori.

To construct a complete hyperbolic structure on M it suffices to

construct a diffeomorphism D : M̃ → H3 carrying each ideal

3-simplex in T̃ to a geometric ideal simplex, i.e. the convex hull

of 4 distinct points on S∞. The map D will be the developing

map of our hyperbolic structure.

The first step is to solve the gluing equations. They have a

variable zi for each 3-simplex ∆i in T and an equation for each

edge. The value of zi represents the cross-ratio (or shape

parameter) of D(∆̃i) ⊂ H3 for any lift ∆̃i of ∆i . (Fix an arbitrary

ordering of the vertices.)
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Gluing equations

a

b

c

d

a→ 0 c → 1

d → z

b →∞ b →∞

b →∞



Gluing equations

zi

zi

zi−1
zi

zi−1
zi

1
1−zi

1
1−zi

S1

S2
S3

S4

S5

S6

Let S1, . . . ,Sv be the linear fractions assigned to e in the

tetrahedra incident to e. Then the equation corresponding to e is:

v∏
i=1

Si = 1.



Completeness equations

The solutions to the gluing equations form a complex affine

algebraic set of dimension k , where k is the number of ends of M.

Given a solution, one can construct an equivariant map from M̃

to H3, unique up to conjugation in Isom+(H3), that carries

topological ideal simplices to (possibly degenerate) geometric

ideal simplices. This works because the gluing equations ensure

that a trivial loop around an edge has trivial holonomy.

These equivariant maps are called pseudo-developing maps.

Often they are not even local homeomorphisms, So they usually

don’t determine complete hyperbolic structures. (In fact, only 2

of them do.) The extra conditions needed for completeness are:

• All Im zi are non-zero with the same sign; and

• For each end, some (hence any) non-trivial curve on the

torus has parabolic holonomy. (These are the completeness

equations.)
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Completions

Suppose that Z = (z1, . . . , zN) is a solution to the gluing

equations which defines a complete hyperbolic structure; i.e all

Im zi > 0, and the completeness equations hold.

Consider a nearby solution W = (w1, . . . ,wN), with all Im wi > 0,

but not satisfying the completeness equations. The

pseudo-developing map D defined by W is a developing map, but

for an incomplete hyperbolic structure.

For each end E of M, the holonomy representation ρD takes

π1(E ) ∼= Z⊕ Z to an abelian group of loxodromic isometries with

a common axis AE . The metric space completion Ê adjoins the

quotient space AE/ρD(π1(E )) – either one point or a circle.

In the case that AE/ρD(π1(E )) is a circle, Ê is a hyperbolic

manifold.
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Dehn Filling

Suppose that the completion M̂ is a (hyperbolic) manifold, so

each end of M = N◦ has been compactified by adding a circle.

When this happens the group ρD(π1(E )) is discrete and cyclic,

and hence ρD |π1(E) has a cyclic kernel. Let µE be a generator of

the kernel.

Topologically, M̂ is obtained from N by adding a solid torus

S1 ×D2 to the boundary component corresponding to E , so that

the meridian curves ∗ × ∂D are homotopic to µE . We say M̂ is a

Dehn filling of N. This discussion motivates:

Thurston’s Dehn Filling Theorem. Let N be a compact

3-manifold boundary a torus. Then all but finitely many Dehn

fillings of N are hyperbolic. (In fact there is a neighborhood of the

developing map of M contains developing maps for hyperbolic

structures on all but finitely many Dehn fillings.)

There is also an extension of this result to the case where ∂N has

more than one boundary components.
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