
SOLUTIONS OF SOME EXERCISES ON DIVISIBLE

CONVEX SETS

MICKAËL CRAMPON

Here come short solutions for some exercises of the exercises sheets A,
B, C, D of Yves Benoist. I might expand them later on.
We call p : Rd −→ P(Rd) the canonical projection.

Sheet A.

Exercise 1. The symmetry of dΩ and its de�niteness are clear. To
prove the triangular inequality, �rst remark that if x, z, y ∈ Ω are in a
same projective line, then we have

dΩ(x, y) = dΩ(x, z) + dΩ(z, y).

(That means that projective lines are actually metric geodesics.)
Now, pick two points x and y, and another point z which is not on
(xy). We use Figure 1. The points a1 and b1 are the intersection points
of (xy) and the boundary. The point o is the intersection point of
two supporting hyperplanes of Ω at a1 and b1. The point z′ is the
intersection of (oz) with (xy). We are going to prove that

dΩ(y, z′) 6 dΩ(y, z) and dΩ(z′, x) 6 dΩ(z, x),

which would imply that dΩ(x, y) = dΩ(x, z′) + dΩ(z′, y) 6 dΩ(x, z) +
dΩ(z, y) by the previous remark.
Recall that

dΩ(x, y) = log[a1b1xy] =
|a1x|
|a1y|

|b1y|
|b1x|

.

(| · | is any auxiliary norm on the a�ne line (xy).) We use the funda-
mental property of the cross-ratio which says that

[a1b1z
′y] = [a′2b

′
2zy] and [a1b1xz

′] = [a′3b
′
3xz].

Now, just notice that

(1) [a′2b
′
2zy] 6 [a2b2zy] and [a′3b

′
3xz] 6 [a3b3xz],

hence

[a1b1z
′y] 6 [a2b2zy] and [a1b1xz

′] 6 [a3b3xz],

and taking logarithm :

dΩ(y, z′) 6 dΩ(y, z) and dΩ(z′, x) 6 dΩ(z, x).
1



2 MICKAËL CRAMPON

Figure 1

Furthermore, we can see that there is equality in (1) if and only if
a2 = a′2, b2 = b′2, a3 = a′3 and b3 = b′3. So, if one considers the red
convex set Ω′ of the picture, we will have

dΩ(x, y) = dΩ(x, z) + dΩ(z, y),

and the space will not be uniquely geodesic. In fact, the only obstruc-
tion to be uniquely geodesic is to have two open segments in the bound-
ary ∂Ω which are in a same 2-dimensional projective subspace but
which are not included in a same supporting hyperplane.
In particular, (Ω, dΩ) is uniquely geodesic if Ω is strictly convex.
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The metric dΩ is complete because metric balls are compact.

Exercise 2.

(i) One has to prove that, if K is a compact subset of Ω, then the set
{g ∈ ∆, gK ∩K 6= ∅} is �nite. This is a consequence of Arzelá-
Ascoli theorem and the fact that the elements of ∆ preserve the
metric dΩ :

Theorem 1 (Arzelá-Ascoli). Let X be a compact Hausdor� space,
and (Y, dY ) a metric space. A subset F ⊂ C(X, Y ) of continuous
functions from X to Y is relatively compact if and only if F is

(i) equicontinous, that is, for all ε > 0 and x ∈ X, there is a
neighborhood U of x in X such that for all y ∈ U and f ∈ F ,
one has dY (f(x), f(y)) < ε ;

(ii) pointwise relatively compact, that is, the set {f(x), f ∈ F}
is relatively compact for any x ∈ X.

Use the theorem with X = K and (Y, dY ) = (Ω, dΩ).

(ii) Let Ω0 be the convex hull of the ∆-orbit of x0 ∈ Ω.
A convex set is the convex hull of its extremal points. So, if Ω0 6= Ω
then there is an extremal point z of Ω which is not in the closure
Ω0 of Ω0. This point has a neighborhood U in the projective space
P(Rd) such that U ∩ Ω0 = ∅.
Take a sequence (zn) in U ∩ Ω0 converging to z. Then one can
check that the distance dΩ(zn,Ω0) goes to +∞ with n. In particu-
lar the distance dΩ(zn,∆ · x0) goes to +∞, which contradicts the
fact that the action of ∆ on Ω is cocompact.

Sheet B.

Exercise 1. If π = lim γn
‖γn‖ is a rank-one operator, call π

+ = p(π(Rd))

its image in P(Rd)), which is a point. Set ΛΓ as the closure of the points
π+ for any limit π = lim γn

‖γn‖ , γn ∈ Γ, which is a rank-one operator.

This is the smallest Γ-invariant closed subset of P(Rd).

Exercise 5.

(i) The boundary p(∂C) of p(C) is Γ-invariant and closed, hence
contains ΛΓ.

(ii) The convex hull Ωmin = C(ΛΓ) of ΛΓ in P(Rd) is contained in
any other Γ-invariant convex subset of P(Rd). Take Cmin as one
of the two connected components of Cmin = p−1(Ωmin). For Cmax,
consider the dual action of Γ on the dual space (Rd)∗. It preserves
a unique minimal convex cone C∗max. By duality, C

∗
max is sent on a
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properly convex cone Cmax of Rd. Since duality reverses inclusions,
Cmax contains any Γ-invariant convex cone.

(iii) This is a consequence of Ex.2 (ii) of sheet A.

Sheet C.

Exercise 1.

(i) The non-trivial algebraic subgroups of SL(2,R) are, up to conju-
gation, the groups of diagonal matrices, of upper-triangular matri-
ces, of unipotent matrices and SO(2,R). All of them are solvable,
so Γ is Zariski-dense in SL(2,R).

(ii) Let Γ be the topological closure of Γ in SL(2,R). It is a Lie sub-
group of SL(2,R) whose Lie algebra is invariant under the adjoint
action of SL(2,R) since Γ is Zariski-dense. Hence its Lie algebra is
either {0} or sl(2,R), that is, Γ is discrete or Γ = SL(2,R) hence
Γ is dense.

(iii) (One should read the question as : �nd a matrix whose eigenvalues
are real, positive and distinct from 1.) If Γ is dense, it is obvious.
If Γ is discrete, one can look at its action on the hyperbolic plane
H2. One wants to prove that Γ contains a hyperbolic transforma-
tion. If not, either Γ contains two parabolic transformations �xing
di�erent points of ∂H2 and by considering their product one can
construct a hyperbolic element (maybe one should consider pow-
ers of them) ; or Γ contains two elliptics elements (rotations) �xing
two distinct points in H2 and we can do the same (that is a bit
trickier).

(iv) Consider two elements whose eigenvalues are real and positive and
follow the arrows to construct one whose eigenvalues are real and
negative...

Exercise 4. Let N be an in�nite abelian normal subgroup of Γ.
SL(d,R) is the Zariski-closure of Γ in SL(d,R). Call H the Zariski-
closure of N in SL(d,R). H is abelian and normal in SL(d,R), because
these notions involve only polynomial relations which are preserved
when one goes to the Zariski-closure. But SL(d,R) is a simple group,
hence H should be {Id} or SL(d,R), which contradicts the fact that is
respectively in�nite and abelian.

Sheet D.

Exercise 4.

(i) Call s an open segment in ∂Ω. One can �nd a triangle T with
vertices x, y, z which contains Ω and such that s ⊂ [xy]. Now
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consider the projective transformation γ given by the matrix 1 0 0
0 1 0
0 0 2


in the basis x, y, z. γ preserves the triangle and γn(Ω) converges
to a triangle when n goes to +∞ (the vertices of this triangle are
z and the extremal points of the maximal closed segment of ∂Ω
containing s).

(ii) One can proceed by duality using part (i). One can also consider a
triangle containing Ω whose one of the vertices is a point x ∈ ∂Ω
where ∂Ω is not C1.

Exercise 5.

(i) Fix an a�ne chart containing Ω and choose a Euclidean metric
on it. There is a point x ∈ ∂Ω where the Hessian matrix of the
boundary is non-degenerate. Let B be the osculating ball of ∂Ω at
x. The Hilbert geometry (B, dB) is a hyperbolic geometry. Con-
sider a hyperbolic transformation γ of B whose repulsive �xed
point is x and attractive �xed point is some y ∈ ∂B. Because the
boundaries of Ω and B are the same at x up to order 2, one can
check that lim

n→+∞
γn(Ω) = B.

(ii) If Ω is a polygon, GdΩ consists of the polygone and a triangle. If
Ω is a quarter disk, GdΩ consists of the quarter disk, a triangle,
a half disk and an ellipsoid.

Exercise 6.

(i) Assume the contrary. One can �nd a sequence of strictly convex
sets Ωn of F and a sequence of geodesic triangles Tn = xnynzn in
Ωn as well as a point un on [xnyn] such that

min{dΩn(un, [xnzn]), dΩn(un, [ynzn])} > n.

Benzécri's compactness theorem says that the action of Gd on the
space {(Ω, x),Ω ⊂ P(Rd), x ∈ Ω} is proper and cocompact. Since
F is closed, one can assume that (Ωn, un) converges to (Ω, u), with
Ω stricly convex. By passing to a subsequence, one can also assume
that xn, yn and zn converge to x, y and z in Ω. But Ω is strictly
convex, so dΩ(u, [xz]) < +∞, which contradicts the fact that

min{dΩn(un, [xnzn]), dΩn(un, [ynzn])} → +∞.

(ii) Take a limit Ω = lim Ωn with Ωn in Fδ. Pick a triangle T in Ω. It
is a limit of triangles in Ωn which are δ-thin, so T is also δ-thin.

E-mail address: mickael.crampon@usach.cl


