SOLUTIONS OF SOME EXERCISES ON DIVISIBLE CONVEX SETS

MICKAËL CRAMPON

Here come short solutions for some exercises of the exercises sheets A, B, C, D of Yves Benoist. I might expand them later on. We call $p : \mathbb{R}^d \longrightarrow \mathcal{P}(\mathbb{R}^d)$ the canonical projection.

Sheet A.

Exercise 1. The symmetry of d_{Ω} and its definiteness are clear. To prove the triangular inequality, first remark that if $x, z, y \in \Omega$ are in a same projective line, then we have

$$d_{\Omega}(x,y) = d_{\Omega}(x,z) + d_{\Omega}(z,y).$$

(That means that projective lines are actually metric geodesics.) Now, pick two points x and y, and another point z which is not on (xy). We use Figure 1. The points a_1 and b_1 are the intersection points of (xy) and the boundary. The point o is the intersection point of two supporting hyperplanes of Ω at a_1 and b_1 . The point z' is the intersection of (oz) with (xy). We are going to prove that

$$d_{\Omega}(y, z') \leqslant d_{\Omega}(y, z)$$
 and $d_{\Omega}(z', x) \leqslant d_{\Omega}(z, x)$,

which would imply that $d_{\Omega}(x, y) = d_{\Omega}(x, z') + d_{\Omega}(z', y) \leq d_{\Omega}(x, z) + d_{\Omega}(z, y)$ by the previous remark. Recall that

$$d_{\Omega}(x,y) = \log[a_1b_1xy] = \frac{|a_1x|}{|a_1y|} \frac{|b_1y|}{|b_1x|}.$$

 $(|\cdot|$ is any auxiliary norm on the affine line (xy).) We use the fundamental property of the cross-ratio which says that

$$[a_1b_1z'y] = [a'_2b'_2zy]$$
 and $[a_1b_1xz'] = [a'_3b'_3xz].$

Now, just notice that

(1)
$$[a'_2b'_2zy] \leq [a_2b_2zy] \text{ and } [a'_3b'_3xz] \leq [a_3b_3xz],$$

hence

$$[a_1b_1z'y] \leqslant [a_2b_2zy]$$
 and $[a_1b_1xz'] \leqslant [a_3b_3xz],$

and taking logarithm :

$$d_{\Omega}(y, z') \leq d_{\Omega}(y, z)$$
 and $d_{\Omega}(z', x) \leq d_{\Omega}(z, x)$.

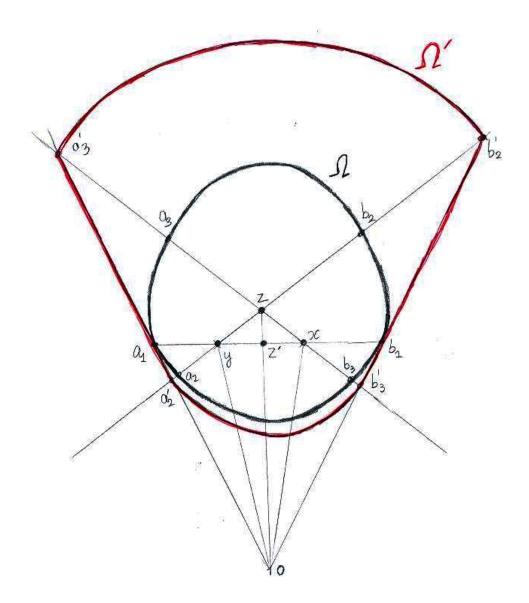


FIGURE 1

Furthermore, we can see that there is equality in (1) if and only if $a_2 = a'_2$, $b_2 = b'_2$, $a_3 = a'_3$ and $b_3 = b'_3$. So, if one considers the red convex set Ω' of the picture, we will have

$$d_{\Omega}(x,y) = d_{\Omega}(x,z) + d_{\Omega}(z,y),$$

and the space will not be uniquely geodesic. In fact, the only obstruction to be uniquely geodesic is to have two open segments in the boundary $\partial\Omega$ which are in a same 2-dimensional projective subspace but which are not included in a same supporting hyperplane.

In particular, (Ω, d_{Ω}) is uniquely geodesic if Ω is strictly convex.

3

The metric d_{Ω} is complete because metric balls are compact.

Exercise 2.

(i) One has to prove that, if K is a compact subset of Ω, then the set {g ∈ Δ, gK ∩ K ≠ ∅} is finite. This is a consequence of Arzelá-Ascoli theorem and the fact that the elements of Δ preserve the metric d_Ω :

Theorem 1 (Arzelá-Ascoli). Let X be a compact Hausdorff space, and (Y, d_Y) a metric space. A subset $F \subset C(X, Y)$ of continuous functions from X to Y is relatively compact if and only if F is

- (i) equicontinous, that is, for all $\epsilon > 0$ and $x \in X$, there is a neighborhood U of x in X such that for all $y \in U$ and $f \in F$, one has $d_Y(f(x), f(y)) < \epsilon$;
- (ii) pointwise relatively compact, that is, the set $\{f(x), f \in F\}$ is relatively compact for any $x \in X$.

Use the theorem with X = K and $(Y, d_Y) = (\Omega, d_\Omega)$.

(ii) Let Ω_0 be the convex hull of the Δ -orbit of $x_0 \in \Omega$.

A convex set is the convex hull of its extremal points. So, if $\Omega_0 \neq \Omega$ then there is an extremal point z of Ω which is not in the closure $\overline{\Omega}_0$ of Ω_0 . This point has a neighborhood U in the projective space $\mathcal{P}(\mathbb{R}^d)$ such that $U \cap \Omega_0 = \emptyset$.

Take a sequence (z_n) in $U \cap \Omega_0$ converging to z. Then one can check that the distance $d_{\Omega}(z_n, \Omega_0)$ goes to $+\infty$ with n. In particular the distance $d_{\Omega}(z_n, \Delta \cdot x_0)$ goes to $+\infty$, which contradicts the fact that the action of Δ on Ω is cocompact.

Sheet B.

Exercise 1. If $\pi = \lim \frac{\gamma_n}{\|\gamma_n\|}$ is a rank-one operator, call $\pi^+ = p(\pi(\mathbb{R}^d))$ its image in $\mathcal{P}(\mathbb{R}^d)$), which is a point. Set Λ_{Γ} as the closure of the points π^+ for any limit $\pi = \lim \frac{\gamma_n}{\|\gamma_n\|}, \ \gamma_n \in \Gamma$, which is a rank-one operator. This is the smallest Γ -invariant closed subset of $\mathcal{P}(\mathbb{R}^d)$.

Exercise 5.

- (i) The boundary $p(\partial C)$ of p(C) is Γ -invariant and closed, hence contains Λ_{Γ} .
- (ii) The convex hull $\Omega_{min} = C(\Lambda_{\Gamma})$ of Λ_{Γ} in $\mathcal{P}(\mathbb{R}^d)$ is contained in any other Γ -invariant convex subset of $\mathcal{P}(\mathbb{R}^d)$. Take C_{\min} as one of the two connected components of $C_{min} = p^{-1}(\Omega_{min})$. For C_{max} , consider the dual action of Γ on the dual space $(\mathbb{R}^d)^*$. It preserves a unique minimal convex cone C^*_{max} . By duality, C^*_{max} is sent on a

MICKAËL CRAMPON

properly convex cone C_{max} of \mathbb{R}^d . Since duality reverses inclusions, C_{max} contains any Γ -invariant convex cone.

(iii) This is a consequence of Ex.2 (ii) of sheet A.

Sheet C.

Exercise 1.

- (i) The non-trivial algebraic subgroups of SL(2, R) are, up to conjugation, the groups of diagonal matrices, of upper-triangular matrices, of unipotent matrices and SO(2, R). All of them are solvable, so Γ is Zariski-dense in SL(2, R).
- (ii) Let Γ be the topological closure of Γ in SL(2, ℝ). It is a Lie subgroup of SL(2, ℝ) whose Lie algebra is invariant under the adjoint action of SL(2, ℝ) since Γ is Zariski-dense. Hence its Lie algebra is either {0} or sl(2, ℝ), that is, Γ is discrete or Γ = SL(2, ℝ) hence Γ is dense.
- (iii) (One should read the question as : find a matrix whose eigenvalues are real, positive and distinct from 1.) If Γ is dense, it is obvious. If Γ is discrete, one can look at its action on the hyperbolic plane \mathbb{H}^2 . One wants to prove that Γ contains a hyperbolic transformation. If not, either Γ contains two parabolic transformations fixing different points of $\partial \mathbb{H}^2$ and by considering their product one can construct a hyperbolic element (maybe one should consider powers of them); or Γ contains two elliptics elements (rotations) fixing two distinct points in \mathbb{H}^2 and we can do the same (that is a bit trickier).
- (iv) Consider two elements whose eigenvalues are real and positive and follow the arrows to construct one whose eigenvalues are real and negative...

Exercise 4. Let N be an infinite abelian normal subgroup of Γ . SL(d, \mathbb{R}) is the Zariski-closure of Γ in SL(d, \mathbb{R}). Call H the Zariskiclosure of N in SL(d, \mathbb{R}). H is abelian and normal in SL(d, \mathbb{R}), because these notions involve only polynomial relations which are preserved when one goes to the Zariski-closure. But SL(d, \mathbb{R}) is a simple group, hence H should be $\{Id\}$ or SL(d, \mathbb{R}), which contradicts the fact that is respectively infinite and abelian.

Sheet D.

Exercise 4.

(i) Call s an open segment in $\partial\Omega$. One can find a triangle T with vertices x, y, z which contains Ω and such that $s \subset [xy]$. Now

consider the projective transformation γ given by the matrix

$$\left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{array}\right)$$

in the basis x, y, z. γ preserves the triangle and $\gamma^n(\Omega)$ converges to a triangle when n goes to $+\infty$ (the vertices of this triangle are z and the extremal points of the maximal closed segment of $\partial\Omega$ containing s).

(ii) One can proceed by duality using part (i). One can also consider a triangle containing Ω whose one of the vertices is a point $x \in \partial \Omega$ where $\partial \Omega$ is not C^1 .

Exercise 5.

- (i) Fix an affine chart containing Ω and choose a Euclidean metric on it. There is a point x ∈ ∂Ω where the Hessian matrix of the boundary is non-degenerate. Let B be the osculating ball of ∂Ω at x. The Hilbert geometry (B, d_B) is a hyperbolic geometry. Consider a hyperbolic transformation γ of B whose repulsive fixed point is x and attractive fixed point is some y ∈ ∂B. Because the boundaries of Ω and B are the same at x up to order 2, one can check that lim_{n→+∞} γⁿ(Ω) = B.
- (ii) If Ω is a polygon, $\overline{G_d\Omega}$ consists of the polygone and a triangle. If Ω is a quarter disk, $\overline{G_d\Omega}$ consists of the quarter disk, a triangle, a half disk and an ellipsoid.

Exercise 6.

(i) Assume the contrary. One can find a sequence of strictly convex sets Ω_n of F and a sequence of geodesic triangles $T_n = x_n y_n z_n$ in Ω_n as well as a point u_n on $[x_n y_n]$ such that

 $\min\{d_{\Omega_n}(u_n, [x_n z_n]), d_{\Omega_n}(u_n, [y_n z_n])\} \ge n.$

Benzécri's compactness theorem says that the action of G_d on the space $\{(\Omega, x), \Omega \subset \mathcal{P}(\mathbb{R}^d), x \in \Omega\}$ is proper and cocompact. Since F is closed, one can assume that (Ω_n, u_n) converges to (Ω, u) , with Ω strictly convex. By passing to a subsequence, one can also assume that x_n, y_n and z_n converge to x, y and z in $\overline{\Omega}$. But Ω is strictly convex, so $d_{\Omega}(u, [xz]) < +\infty$, which contradicts the fact that

$$\min\{d_{\Omega_n}(u_n, [x_n z_n]), d_{\Omega_n}(u_n, [y_n z_n])\} \to +\infty.$$

(ii) Take a limit $\Omega = \lim \Omega_n$ with Ω_n in F_{δ} . Pick a triangle T in Ω . It is a limit of triangles in Ω_n which are δ -thin, so T is also δ -thin. *E-mail address:* mickael.crampon@usach.cl