
TRANSLATION SURFACES, INTERVAL EXCHANGE MAPS, AND COUNTING PROBLEMS:

GEAR PROBLEM SESSIONS

JAYADEV S. ATHREYA

1. Interval Exchange Maps and Translation Surfaces.

(1) Prove that for a translation surface of genus g, the sum of the excess angle at singular points must be (4g − 4)π.
Equivalently, show that for any holomorphic 1-form on a genus g Riemann surface, the orders of the zeros must sum
to 2g − 2.

(2) Show that the regular 4g-gon with parallel sides identified yields a genus g surface with one singular point of angle
(4g− 2)π. Show that the regular 4g+ 2-gon with opposite sides identified yields a genus g surface with two singular
points each of angle 2gπ.

(3) Let α ∈ [0, 1). Show that the circle rotation Rα : [0, 1)→ [0, 1) given by

Rα(x) = x+ α mod 1

can be realized as an interval exchange of two intervals.

(4) Describe the interval exchange map associated to the flow with slope 1
s , s > 0, to the horizontal transversals illustrated

below (express your answer in terms of s)

(a) The regular octagon, assuming the octagon has height 1.

(b) An L-shaped table with parameters a, b, c, d > 0, with a + b
2 = 1. Do it for s < c. Perhaps pick some specific

values of a, b, c, d, s to make the problem more concrete (try b = c = 1, and let d vary as a free parameter to
start).
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a

(5) Prove that if α /∈ Q, the orbit of any point x ∈ [0, 1) under Rα is dense in [0, 1). Move on to showing that it is in
fact uniformly distributed with respect to Lebesgue measure.

(6) More generally, prove that a continuous transformation T of a compact metric space X with a unique invariant
probability measure µ satisfies that for any f ∈ C(X),

1

N

n−1∑
i=0

f(T ix) =

∫
X

fdµ

(7) Prove that an irreducible IET with length parameters (λ1, . . . , λm) satisfies Keane’s infinite distinct orbit condition

(i.d.o.c.) (that is, the negative orbits of the discontinuity points δj =
∑j
i=1 λi are infinite and distinct) if

∑
λi = 1

is the only rational relation satisfied by the λi. Show also that the i.d.o.c. implies that every well-defined forward
orbit is dense.

(8) Prove that the set of holonomy vectors of saddle connections is a discrete subset of the plane.
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2. Rauzy Induction, Lyapunov Exponents, and Teichmüller Flow.

(1) Show that Rauzy induction on the space of 2-IETS is the Farey map f : [0, 1]→ [0, 1]

f(x) =

{
x

1−x x ∈ [0, 1/2)
1−x
x x ∈ (1/2, 1]

Show further that if you define the ‘speed-up’ by applying each transformation as many times as you can, you obtain
the Gauss map G(x) =

{
1
x

}
.

(2) Compute the Rauzy graph for the permutation (4321).

(3) ? Take the transversal for the regular octagon, sheared by hs for your favorite value of s from Problem 2(a), §1.1,
and shorten it from the right until it hits another vertical singular leaf. Compute the new associated IET. How does
it relate to the original IET? Do the same exercise for the L-shaped table in Problem (2)(b).

(4) ? Assuming Kingman’s Subadditive Ergodic Theorem, prove (almost sure) existence of Lyapunov exponents for

random products (matrices chosen by fair coin flip) of the matrices

(
1 1
0 1

)
and

(
1 0
1 1

)
.

(5) Compute the Lyapunov exponents of a hyperbolic toral automoprhism, that is, the map TA : R2/Z2 → R2/Z2 given
by

TA(v) = Av mod 1,

where A ∈ SL(2,Z) has trace > 2. For example, let A =

(
2 1
1 1

)
(6) For your favorite IET Tλ,π, and point x ∈ [0, 1], use a computer program to compute the number of visits of the

orbit of x to the jth interval up till time N . Subtract nλj , take the logarithm of what’s left, and divide by log n.
Does it appear you are getting a limit?

(7) Write a script to take random products of the matrices in Problem 1, §1.3. Apply them to a fixed (non-zero) vector
v ∈ R2. How quickly do you ‘see’ the Lyapunov exponents?
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3. Counting.

3.1. Integer Vectors and Lattices.

(1) Prove that

(a) limR→∞
|Z2∩B(0,R)|

πR2 = 1.

(b) limR→∞
|Z2

prim∩B(0,R)|
πR2 = 1

ζ(2) .

Also, compute the hyperbolic volume of H2/SL(2,Z).

(2) Given f ∈ Cc(R2), define f̂ : SL(2,R)/SL(2,Z)→ R by

f̂(gSL(2,Z)) =
∑
v∈Z2

f(gv).

Show that ∫
SL(2,R)/SL(2,Z)

f̂dµ =

∫
R2

fdm,

where dµ and dm are, respectively the Haar probability measure on SL(2,R)/SL(2,Z) and the standard Lebesgue
measure on R2.

3.2. The Siegel-Veech Machine.

(1) Let H be a stratum of Ωg, and let µH denote the Masur-Veech probability measure on H. Given f ∈ Cc(R2), let

f̂ : H → R be given by

f̂(ω) =
∑
v∈Λω

f(v).

Assuming f̂ ∈ L1(H, µH), show that there is a constant cH so that∫
H
f̂dµH = cH

∫
R2

fdm.

(2) Let Q be the quadrilateral with vertices at (±1, 1), (±1/2, 1/2). Show that for t >> 0,

1

2π

∫ 2π

0

χQ(gtrθv) ≈
{
e−t |v| ∈ (et/2/2, et/2)
0 otherwise

where rθ is the rotation rθ =

(
cos θ − sin θ
sin θ cos θ

)
, and gt =

(
et/2 0

0 e−t/2

)
3.3. Computer Experiments.

(1) Write SAGE code to generate (primitive) lattice vectors and compute asymptotics.

(2) Write SAGE code to generate saddle connections on an L-shaped table and compute asymptotics. Try the parameter

values a = d =
√

5−1
2 and b = c = 1.


