Geometry, Groups and Dynamics/GEAR Seminar (held at the Illinois hub of GEAR)

12:00 pm, Tuesday, April 5, 2016, 243 Altgeld Hall

Peter Shalen (University of Illinois at Chicago)
Homology and volume for hyperbolic 3-orbifolds, and enumeration of arithmetic groups Abstract: A theorem of Borel's asserts that for any positive real number $\$ V \$$, there are at most finitely many arithmetic lattices in $\$\{\backslash \mathrm{rm} \operatorname{PSL}\}$ _ $2(\{\backslash m a t h b b ~ C\}) \$$ of covolume at most $\$ \mathrm{~V} \$$, or equivalently at most finitely many arithmetic hyperbolic $\$ 3 \$$-orbifolds of volume at most $\$ \mathrm{~V} \$$. Determining all of these for a given $\$ \mathrm{~V} \$$ is algorithmically possible for a given $\$ V \$$ thanks to work by Chinburg and Friedman, but appears to be impractical except for very small values of $\$ V \$$, say $\$ V=0.41 \$$. (The smallest covolume of a hyperbolic $\$ 3 \$$-orbifold is about $\$ 0.39 \$$.) It turns out that the difficulty in the computation for a larger value of $\$ \mathrm{~V} \$$ can be dealt with if one can find a good bound on $\$ \backslash \operatorname{dim} H_{-} 1(0, \backslash$ mathbb $Z / 2$ \mathbb $Z) \$$, where $\$ 0 \$$ is a hyperbolic $\$ 3 \$$-orbifold of volume at most $\$ V \$$. In the case of a hyperbolic $\$ 3 \$$-manifold \$M\$, not necessarily arithmetic, joint work of mine with Marc Culler and others gives good bounds on the dimension of $\$ \mathrm{H} _1(\mathrm{M}, \backslash$ mathbb $\mathrm{Z} / 2$ \mathbb Z$)$ \$ in the presence of a suitable bound on the volume of $\$ M \$$. In this talk I will discuss some analogous results for hyperbolic $\$ 3 \$$-orbifolds, and the prospects for applying results of this kind to the enumeration of arithmetic lattices. A feature of the work that I find intriguing is that while it builds on my geometric work with Culler, the new ingredients involve primarily purely topological arguments about manifolds---the underlying spaces of the orbifolds in question---and have a classical, combinatorial flavor. At this point it appears that I can prove the following statement: If $\$ \backslash$ Omega $\$$ is a hyperbolic 3 -orbifold of volume at most $\$ 1.72 \$$, having a link as singular set and containing no embedded turnovers, then \$\$\dim H_1(\Omega; \mathbb Z_2) \e 1+ $\backslash m a x \backslash$ bigg(3,7\bigg\Ifloor\frac\{10\}\{3\}
rm vol\}(\Omega)\bigg\rfloor\bigg)+ \max\bigg(3, $7 \backslash$ bigg \ffloor\frac\{5\}\{3\}\{\rm vol\}(\Omega)\bigg\rfloor\bigg). \$\$ In particular, \$\dim H_1(\Omega;\mathbb Z_2)\le50\$. Various stronger bounds on \$\dim H_1(\Omega;\mathbb Z_2)\$ follow from stronger bounds on the volume of $\$ \backslash O m e g a \$$. The restriction on turnovers is not an obstruction to applying the results to the enumeration of arithmetic groups. The assumption that the singular set is a link is more serious, but as it is used only in a mild way in this work, the methods seem promising for the prospective application.
Video

