Geometry, Groups and Dynamics/GEAR Seminar
(held at the Illinois hub of GEAR)

12:00 pm, Tuesday, October 11, 2016, 243 Altgeld Hall

Alper Gur (Indiana University)

Hypersurfaces with Central Convex Cross-Sections

The compact transverse cross-sections of a cylinder over a central ovaloid in $\mathbf{R}^{\wedge} n, n \geq 3$, with hyperplanes are central ovaloids. A similar result holds for quadrics (level sets of quadratic polynomials in $\mathbf{R}^{\wedge} n, n \geq 3$. Their compact transverse cross-sections with hyperplanes are ellipsoids, which are central ovaloids. In $\mathbf{R}^{\wedge} 3$, Blaschke, Brunn, and Olovjanischnikoff found results for compact convex surfaces that motivated B. Solomon to prove that these two kinds of examples provide the only complete, connected, smooth surfaces in $\mathbf{R}^{\wedge} 3$, whose ovaloid crosssections are central. We generalize that result to all higher dimensions, proving: If $\boldsymbol{M}^{\wedge}\{n-1\} \subseteq \boldsymbol{R}^{\wedge} n, n \geq 4$, is a complete, connected, smooth hypersurface, which intersects at least one hyperplane transversally along an ovaloid, and every such ovaloid on \boldsymbol{M} is central, then \boldsymbol{M} is either a cylinder over a central ovaloid or a quadric.

Video

