Geometry, Groups and Dynamics/GEAR Seminar (held at the Illinois hub of GEAR)

12:00 pm, Tuesday, October 11, 2016, 243 Altgeld Hall

Alper Gur (Indiana University)

Hypersurfaces with Central Convex Cross-Sections

The compact transverse cross-sections of a cylinder over a central ovaloid in \mathbb{R}^n , $n \ge 3$, with hyperplanes are central ovaloids. A similar result holds for quadrics (level sets of quadratic polynomials in \mathbb{R}^n , $n \ge 3$. Their compact transverse cross-sections with hyperplanes are ellipsoids, which are central ovaloids. In \mathbb{R}^n , Blaschke, Brunn, and Olovjanischnikoff found results for compact convex surfaces that motivated B. Solomon to prove that these two kinds of examples provide the only complete, connected, smooth surfaces in \mathbb{R}^n , whose ovaloid crosssections are central. We generalize that result to all higher dimensions, proving: If \mathbb{M}^n (n-1) $\subseteq \mathbb{R}^n$, $n \ge 4$, is a complete, connected, smooth hypersurface, which intersects at least one hyperplane transversally along an ovaloid, and every such ovaloid on \mathbb{M} is central, then \mathbb{M} is either a cylinder over a central ovaloid or a quadric.

<u>Video</u>