Geometry, Groups and Dynamics/GEAR Seminar (held at the Illinois hub of GEAR)

Thursday, April 9, 2015, 1:00 pm in 243 Altgeld Hall

Richard Bishop (Illinois) Clairaut's theorem and potential mechanics on metric spaces

Abstract: For surfaces of revolution Clairaut's theorem gives a first integral for geodesics: $r\cos\theta = \constant$, where \sis is the distance from the axis to the profile curve and $\theta\$ is the angle the geodesic makes with the latitude circles. We have generalized this to warped products $\W = B\times_fF\$ of metric spaces: along any geodesic $\gamma\$ in $\W\$, $\sis v\$, $\sis constant$, where $\sis\$ is the speed of the projection of $\gamma\$ to $\Sis\$. When $\Sis\$, $\Sis\$ are Riemannian manifolds, the geodesic equations have a known form: $\Sis\$ gamma_B'' = c(1/f^3) {\rm grad} f, \qquad (f^2v)' = 0, \Sis\ where $\$ gamma_B\Sis the projection to $\Sis\$. This has the interpretation that $\$ gamma_B\Sis a trajectory of the potential function $\Sus\$. The fact that the speed of $\$ gamma_B\Sis a constant $\Sis\$ a $\$ speed of $\$ speed of $\$ conservation of energy $\Sus^2 + 2U = (b/c)^2\$, where $\Sis\$ is the speed of $\$ speed of $\$ speed of $\$ speed of energy $\$ sus a sus of energy $\$ sus the speed of $\$ speed of $\$ speed of $\$ speed of $\$ speed of energy $\$ speed $\$ speed of $\$ speed of $\$ speed of $\$ speed of $\$ speed $\$ sprove $\$ sprove $\$ sprove $\$ speed $\$ s

<u>Video</u>