Geometry, Groups and Dynamics/GEAR Seminar (held at the Illinois hub of GEAR)

Thursday, April 9, 2015, 1:00 pm in 243 Altgeld Hall

Richard Bishop (Illinois)
 Clairaut's theorem and potential mechanics on metric spaces

Abstract

For surfaces of revolution Clairaut's theorem gives a first integral for geodesics: $\$ \mathrm{r} \backslash \cos \backslash$ theta $=\$$ constant, where $\$ r \$$ is the distance from the axis to the profile curve and $\$ \backslash$ theta $\$$ is the angle the geodesic makes with the latitude circles. We have generalized this to warped products $\$ \mathrm{~W}=$ $B \backslash$ times_ff\$ of metric spaces: along any geodesic \$\gamma\$ in $\$ \mathrm{~W} \$, \$ \mathrm{f}^{\wedge} 2 \mathrm{v}=\mathrm{b} \$$ is constant, where $\$ \mathrm{v} \$$ is the speed of the projection of \$\gamma\$ to \$F\$. When \$B, F\$ are Riemannian manifolds, the geodesic equations have a known form: \$\$ \gamma_B" = c(1/f^3) \{\rm grad\} f, \qquad (f^2v)' =0,\$\$ where \$\gamma_B\$ is the projection to \$B\$. This has the interpretation that \$\gamma_B\$ is a trajectory of the potential function $\$ U=c / 2 f^{\wedge} 2 \$$. The fact that the speed of $\$ \backslash g a m m a \$$ is a constant $\$ a=\backslash s q r t\{b / c\} \$$ becomes the law of conservation of energy $\$ u^{\wedge} 2+2 U=(b / c)^{\wedge} 2 \$$, where $\$ u \$$ is the speed of \$ \backslash gamma_B\$. Hence, for more general metric spaces $\$ \mathrm{~B} \$$, Clairaut's theorem makes it reasonable to interpret the projections of geodesics from a warped product \$B\times_fF\$ to \$B\$ as the trajectories of the potential function $\$ U=1 / 2 f^{\wedge} 2: B \backslash$ to $\{\backslash b f R\} \$$. Since we also have shown that these trajectories are independent of the choice of \$F\$, we can simply take \$F\$ to be the line or a circle. Joint work with Stephanie Alexander.

Video

