Junior GEAR Retreat
 $S L_{2}$-character varieties of 2 and 3-manifolds through examples.

Julien Marche

April 28, 2014

Abstract

We will study many examples of character varieties of surfaces and 3 -manifolds groups. Along the way, we will review their algebraic properties as their symplectic structure (if any), ideal points, torsion form and boundary structures.

1 Problem Session

The following problems shall help you assimilate the material covered in this mini course. The problems which are more challenging are marked with a *.

1. Describe the character variety of the following groups: $\mathbb{Z}, \mathbb{Z}^{2}, F_{2}, \mathbb{Z} / p \mathbb{Z}$.
2. Compute explicitly the symplectic structure of the character variety of the torus $\left(S^{1}\right)^{2}$.
3. Show that the character variety of the figure eight knot whose group is $\langle u, v \mid w v=u w\rangle$ where $w=v^{-1} u v u^{-1}$ is

$$
\left\{(x, y) \in \mathbb{C}^{2} /\left(x^{2}-y-2\right)\left(2 x^{2}+y^{2}-x^{2} y-y-1\right)=0\right\}
$$

where $x=\operatorname{tr} \rho(u)$ and $y=\operatorname{tr} \rho(u v) .{ }^{*}$
4. Describe the character variety of the Heisenberg 3-manifold $H(\mathbb{R}) / H(\mathbb{Z})$ where $H(A)=\left\{\left(\begin{array}{lll}1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1\end{array}\right), x, y, z \in A\right\}$.
5. Find the ideal points of the character variety of the figure eight knot and the corresponding incompressible surfaces. *
6. Compute the torsion form of the handle body of genus 2 .
7. Find a relation between the symplectic form on the character variety of a surface and the Reidemeister torsion, viewed as a volume form. *
8. Describe the character variety of the complement of the torus knot $T_{p, q}$ whose fundamental group is $\left\langle a, b \mid a^{p}=b^{q}\right\rangle$.
9. Let M be the complement of three fibers of the Hopf fibration $p: S^{3} \rightarrow S^{2}$. Describe its character variety and the application induced by the restriction on the boundary.*

2 Open Problem Session

The following questions or broad ideas are currently being studied in areas related to the mini course

1. Understand the precise relation between skein modules of 3-manifolds and character varieties. Is the first the algebra of functions on the second?
2. This question is indeed a question of reductibility: is it true that the skein module of the complement of a knot in S^{3} is reduced? (does not have non trivial nilpotent elements)
3. Let A be the A-polynomial of a knot $K \subset S^{3}$, and X_{A} its Hamiltionian vector field viewed as a vector field on $X\left(S^{3} \backslash K\right)$. Let T be the Reidemeiser torsion viewed as a 1-form on $X\left(S^{3} \backslash K\right)$: compute $\frac{L_{X_{A}} T}{T}$. This question has implication in topological quantum field theory.
4. Show that the skein module of a knot complement in S^{3} is free over $\mathbb{C}\left[t, t^{-1}\right]$.

3 Bibliography

The following material will be useful for the course.

1. D. Cooper, M. Culler, H. Gillet, D. Long and P. B. Shalen. Plane curves associated to character varieties of 3-manifolds. Invent. Math. 118 (1994), 47-84.
2. M. Culler and P. B. Shalen. Varieties of group representations and splittings of 3-manifolds. Ann. of Math. 117 (1983), 109-146.
3. M. Kapovich. Hyperbolic Manifolds and Discrete Groups. Birkhauser's series, Progress in Mathematics, 183, 2000
4. J. Marché, Geometry of the representation spaces in $\mathrm{SU}(2)$. Strasbourg master class on geometry, 333370, IRMA Lect. Math. Theor. Phys., 18, Eur. Math. Soc., Zrich, 2012.
5. J. Marché, Skein modules, AJ conjecture and knot state asymptotics. Minicourse given at CIMPA, Meknes, May 2012.
6. J. Porti, Torsion de Reidemeister pour les varits hyperboliques. Mem. Amer. Math. Soc. 128 (1997), no. 612.
7. P. B. Shalen. Representations of 3-manifold groups. Handbook of geometric topology, 955-1044, North-Holland, Amsterdam, 2002.
