
The mathematical focus of the GEAR Network

1. Introduction

The mathematical focal point of the GEAR network is the interplay of topology, geometry,
and dynamics on character varieties. The core mathematics, namely the theory of locally
homogeneous geometric structures, flat bundles, and their deformation spaces has a long and
distinguished history. The subject has recently acquired a markedly multifaceted flavor with
insights and techniques from several distinct sources being applied to emerging problems.

The moduli space of flat bundles (sometimes called a representation variety, character variety,
or a deformation space) is a central object in several mathematical fields. Closely related is
the deformation space of locally homogeneous geometric structures. These spaces parametrize
equivalence classes of representations of the fundamental group of a space Σ on one hand, and
flat connections on bundles over Σ on the other. They often arise as spaces of solutions to
basic geometric problems, and their global properties provide powerful topological invariants.
The ubiquity of these spaces demands the interplay of methods and viewpoints from multiple
mathematical communities. These communities include: Classical Teichmüller theory, Kleinian

groups, 3-manifold topology, Moduli of vector bundles and gauge theory, Mathematical physics,

Dynamical systems, Invariant theory, and Geometric PDE’s.

2. Historical roots

Classically, moduli spaces arose in the study of monodromy of systems of analytic differential
equations. Analytic continuation of solutions of a system led to a linear representation of the
fundamental group. These were the first examples of local systems, or vector bundles with flat
connections. It was soon realized that these objects were closely related to the uniformization of
Riemann surfaces, providing an analytic motivation for the study of discrete groups (Fuchsian
groups, Kleinian groups).

Uniformization identifies Riemann surfaces with spherical, Euclidean or hyperbolic surfaces
and this leads to two avenues for studying the Teichmüller space, T(Σ), of (marked) conformal
structures (or constant curvature metrics) on a surface Σ. Two largely independent schools of
research developed around these approachs. The first primarily utilized techniques from com-
plex analysis while the other focused on hyperbolic geometry and discrete groups of isometries.

The modern theory of Teichmüller theory began with the work of Ahlfors and Bers. In
their hands quasiconformal mappings became a powerful tool for investigating the holomorphic
geometry of T(Σ). An important example is the Simultaneous Uniformization theorem of
Bers [12]. Every Riemann surface of genus g > 1 has a unique hyperbolic structure, that is, can

be represented as a quotient H2/ρ(π1(Σ)), where π1(Σ)
ρ

−→ PSL(2, R) is a discrete embedding
(a Fuchsian representation). This action extends to CP1 ≈ S2, preserving a circle. A Fuchsian
representation can be deformed within PSL(2, C) to an action on CP1 that preserves a fractal
nonrectifiable Jordan curve Λ. Such an action is quasiconformally conjugate to a Fuchsian
action, taking Λ to the invariant circle. Bers showed that these quasi-Fuchsian groups have a
beautiful and easily stated parametrization: they are parametrized by the two marked Riemann
surfaces that are the quotient of CP1 − Λ by the group action. In particular, the deformation
space identifies naturally with the product T(Σ) × T(Σ).
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These representations correspond to hyperbolic 3-manifolds homeomorphic to Σ × R, which
can be naturally compactified to Σ × [−∞,∞] using the compactification of H3 as a closed
ball. These ideas were later extended to other 3-manifolds by Maskit, Marden and others to
describe the deformation space of hyperbolic structures of a certain nice type (“geometrically
finite manifolds”) explicitly in terms of conformal structures on ideal boundary components.

At roughly the same time, Mostow [92] proved his strong rigidity theorem, that for closed
hyperbolic manifolds of dimension ≥ 3, every homotopy-equivalence is homotopic to a unique
isometry. This was extended to finite volume complete manifolds by Prasad several years later.

The stage was set for Thurston’s revolutionary work in the late 1970’s on hyperbolic 3-
manifolds. The topological theory of 3-manifolds had provided basic decomposition theorems
due to Kneser, Milnor (for connected sums) and Jaco, Shalen and Johannson (for sums along
tori). Thurston realized that the basic building blocks in these decomposition theorems should
have locally homogeneous Riemannian structures. He proceeded to prove this Geometrization

Conjecture for a large class of 3-manifolds. The deformation theory of Kleinian groups, based
on simultaneous uniformization, played an important role in Thurston’s proof.

Thurston’s work in dimension 3 crucially involved ideas from his work in dimension 2. He
introduced fundamental objects, measured foliations and measured geodesic laminations, that
provide both infinitesimal and asymptotic versions of deformations of hyperbolic structures on
surfaces [14]. Although his work was based in hyperbolic geometry and topology, it was deeply
connected to objects like quadratic differentials that are central to the complex analytic study
of Teichmuller space. This helped reunite the two strands of Teichmuller theory.

The Mapping Class Group Mod(Σ), the group of diffeomorphisms of a surface up to iso-
topy, acts on Teichmuller space (T(Σ)) with quotient equal to the moduli space of structures.
Thurston defined a Mod(Σ)-invariant compactification of T(Σ), which led to a classification
of elements of Mod(Σ), analogous to Jordan normal form for matrices [106].[44]. This demon-
strated both the power of using dynamics to study spaces of geometric structures and the degree
to which such spaces provide interesting examples of groups actions. Furthermore, the space
of (projectivized) measured foliations which forms the boundary of this compactification has
a natural simplicial structure. Combinatorial structures are a powerful tool for studying both
the space T(Σ) and the group Mod(Σ). Finding combinatorial objects to associate to other
deformation varieties, is an important goal of current research.

Another significant development came from completely different direction. Inspired by gauge
theory for the weak interaction, Atiyah, Singer and Hitchin [5] began the study of SU(2)-
instantons, and quickly realized that this theory provided an analytic framework for the theory
of stable vector bundles in algebraic geometry. Soon the analytic cornerstones were supplied by
the work of Uhlenbeck [112] and Taubes [105], which led to Donaldson’s startling discovery [40]
of the vast difference between the smooth and topological categories in dimension 4 (coming on
the heels of Freedman’s spectacular work on topological 4-manifolds).

In dimension 2, Atiyah and Bott [4] used gauge theory to give a new understanding of the
moduli space of stable vector bundles over Riemann surfaces, which by the work of Narasimhan-
Seshadri [93] corresponds to surface group representations in compact Lie groups. Using Morse
theory on the space of connections, Atiyah and Bott computed the cohomology of the moduli
space. Shortly thereafter, the theory of Higgs bundles, developed by Hitchin [67] and Simp-
son [102, 103] extended these techniques to all real reductive Lie groups. This theory combined
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the moduli theory of vector bundles (the nonabelian extension of classical Abel-Jacobi the-
ory [60]) with the theory of harmonic maps of Riemannian manifolds. Over a Riemann surface,
representations of π1(Σ) acquire an analytic interpretation, for which the topology of their
moduli can be computed using Hodge theory and algebro-geometric machinery.

3. Current Problems and Future Interactions

Distinct research communities that evolved from the historical roots are re-united by the
GEAR network. We describe recent significant interactions, as well as promising areas for
future collaborations between these communities.

3.1. Hyperbolic 3-manifolds. Thurston’s analysis of hyperbolic 3-manifolds focused atten-
tion on several key problems, old and new, that have only recently been solved, including
the ending lamination conjecture (ELC), the density conjecture, and the tameness conjecture.
These recent successes suggest that it might be possible to employ similar techniques or to
search for similar key constructions in the context of other representation spaces or spaces of
geometric structures. A central motivation for this network is to bring together experts in
hyperbolic geometry and 3-manifolds with those who study other types of geometric structures.

The tameness conjecture says that any hyperbolic 3-manifold with finitely generated funda-
mental group is homeomorphic to the interior of a compact 3-manifold. Proved by Agol [1]
and Calegari-Gabai [28], it is a question of controlling the topology of the ends of the manifold.
This is done by finding certain types of surfaces that fill out the ends. Such a tameness question
is natural for other non-compact, geometric manifolds (see section 3.7).

The density conjecture says that the convex cocompact hyperbolic structures on a hyperbolic
3-manifold are dense in the space of all hyperbolic structures. The convex cocompact structures
have compact convex cores and are parametrized by conformal structures at infinity. Another
natural question was how to parametrize the remaining structures, those with non-compact
convex cores. The ELC states that these are parametrized by geodesic laminations, one for
each end. This was proved by Brock, Canary and Minsky [22, 88] using geometric model
manifolds that are combinatorially defined, depend only on a geodesic lamination determined
by each end, and are then shown to be quasi-isometric to the actual hyperbolic manifold. The
main point is that the models are combinatorially determined by something similar to a point
at infinity in Thurston’s compactification of T(Σ).

Another important line of research comes from Thurston’s theory of hyperbolic Dehn surgery,
whereby infinitely many closed manifolds approximate a noncompact finite volume, complete
hyperbolic manifold ([110]). Although Mostow-Prasad rigidity says that finite volume, complete
structures are unique, in dimension 3 there is a nontrivial deformation space of incomplete
structures in the noncompact case. The nearby closed manifolds are obtained by completing
special incomplete ones but most of the completions are singular. The deformation theory of
singular hyperbolic structures has become an important tool in studying representation varieties
([70],[71],[114]). It played an important role Brock-Bromberg’s proof of the density conjecture
([24], [23]) and in the proof of the Orbifold Theorem ([13], [32]). Singular structures in other
geometries (see section 3.8) lie at a natural interface between groups in the network.
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3.2. Character varieties and 3-manifolds. Pioneering work of Culler and Shalen [34] made
SL(2, C)-character varieties an important tool in 3-dimensional topology. The algebraic geom-
etry of the character variety led to new invariants of 3-manifolds. The basic idea was that
the ideal points of curves in these affine varieties led to actions of the fundamental group on
simplicial trees (and R-trees for higher-dimensional subvarieties). This led to splitting theorems
and hence incompressible surfaces, which is the necessary ingredient for the Haken-Waldhausen
machinery. By using this theory for R-trees, Morgan and Shalen [90, 91] gave new proofs of
Thurston’s acylindricity theorem [108], and an algebraic interpretation of the Thurston cone
of measured geodesic laminations on a surface. One of the most spectacular applications of
this theory is the Cyclic surgery theorem, of Culler-Gordon-Luecke-Shalen [33], giving strong
restrictions on which surgeries on a knot can give 3-manifolds with cyclic fundamental group.

3.3. Special Representations. Surface group representations into groups of Hermitian type
enjoy an integer-valued characteristic class invariant, whose maximization implies strong dis-
creteness and rigidity properties ([51, 53], [111], [17, 18], [26, 27]). Using Higgs bundles,
Hitchin [69] found connected components of representations into split real forms which were
topological cells, containing T(Σ). Labourie [76] and Guichard [62] found dynamical character-
ization of these Hitchin components, while Fock and Goncharov [45], seeking to quantize these
spaces, related these components to Lusztig positivity [80] and the emerging theory of cluster
algebras [47].

A key idea in this subject, called “higher Teichmüller theory,” by Fock-Goncharov, is that
a generalization of Penner’s shearing coordinates [94] gives coordinates on the Hitchin com-
ponents. The combinatorial nature of the space of these coordinates makes them particularly
useful. Also, the natural (Weil-Petersson) symplectic structure has a particularly tractable
form in these coordinates, which enables the quantization of these spaces. A natural question
is to define other global coordinate systems on components of special representations of surface
groups, say, analogous to the Fenchel-Nielsen coordinates on T(Σ).

For G = SL(3, R) these components correspond to the deformation space of convex RP2-

structures, studied by Choi and Goldman [30], Loftin [78, 79], Labourie [75], Benoist [7] -[11] and
others. Interpreting the Hitchin components for other split real forms as geometric structures
is an important question, and has been achieved for SL(4, R) in recent work of Guichard-
Wienhard [63]. Labourie [76] defined a general class of representations (Anosov representations,

since they define Anosov extensions of the geodesic flow to the corresponding flat bundles)
which include representations in the Hitchin component as well as maximal representations.
These results and techniques lead to the properness of the Mod(Σ)-action on these special
representations. Recent work of Guichard and Wienhard [64] makes significant inroads in
relating these special classes of representations to geometric structures on compact manifolds.

3.4. Topology of character varieties. In [37, 37] Daskalopoulos, Weitsman, Wentworth and
Wilkin compute the cohomology of the SL(2, C)-character variety of a closed surface, a signifi-
cant achievement for the simplest complex semisimple Lie group. For the unitary groups U(p, q)
and many other groups of Hermitian type, Bradlow, Garcia-Prada, Gothen, Mundet and others
([17, 18]) have produced sharp results on the topology. Using techniques of boundary maps and
Anosov representations, Guichard and Wienhard [65] have given lower bounds on the number of
connected components, constructed special model representations and determines the possible
holonomies. The parallels between these two approaches deserve further study.
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3.5. Variation of the moduli space with the Riemann surface. For a complex re-
ductive group GC and Riemann surface M the Higgs bundle moduli space H(M,GC) :=
Hom(π1(M), GC)//GC carries a natural hyper-Kähler structure. While this structure varies
with the complex structure on M , the underlying complex-symplectic structure on H(M,GC)
depends only on the underlying topological surface Σ. For real forms G ⊂ GC, the corresponding
moduli spaces inherit Kähler structures, and the underlying symplectic structure depends only
on Σ. In particular this latter structure is invariant under the mapping class group Mod(Σ).

To analyze the dependence on the conformal structure, build a space H(Σ, GC) of Higgs
bundles moduli spaces over marked Riemann surfaces, as the marked Riemann surface varies
over the Teichmüller space T(Σ). This family of hyper-Kähler manifolds with fixed symplectic
structure is the natural object on which to investigate the dependence on the conformal structure
of M . The quotient H(Σ, GC)/Mod(Σ) is a flat orbi-bundle over T(Σ)/Mod(Σ), the Riemann
moduli space. Pulling back to the unit tangent bundle, the horizontal lifts of the Teichmüller
and Weil-Petersson geodesic flows to H(Σ, GC)/Mod(Σ) define dynamical systems which are
dynamically equivalent to the action of Mod(Σ)-action on the character variety. Finer dynamical
invariants should be more tractable in the context of the action of the simpler group R.

3.6. Actions of mapping class groups. The action of the mapping class group on char-
acter varieties or deformation spaces is a rich source of interesting dynamical systems. For
compact groups G, the action of Mod(Σ) on each component of Hom(π,G)/G is ergodic (Gold-
man [52],Pickrell-Xia [95, 96]), as is the Out(π)-action on Hom(π,G)/G when π is a free group
(Goldman [54] and Gelander [50]). For noncompact G, there are regions upon which the action
is proper. In some case Mod(Σ) acts properly on entire components. However, in many cases
the action of Mod(Σ) or Out(π) is proper on an open set whose closure contains subsets upon
which the action displays nontrivial dynamics. Recently Minsky [89] has identified an open set
in Hom(Fn,SL(2, C))//SL(2, C) upon which Out(Fn) acts properly. Generalizing his notion of
primitive-stability to arbitrary complex Lie groups is a natural and fundamental problem.

Geometric quantization as applied to moduli spaces [68] provides new insight on the rep-
resentations and structure of the mapping class group through the work of Andersen [2], and
others. Andersen’s recent proof [3] that mapping class groups are Kazhdan crucially uses these
moduli spaces.

Actions of subgroups of mapping class groups often behave very differently to those of the
entire mapping class group. For example, by work of Masur [83] and McCarthy–Papadopoulos
[84], these actions on the Thurston compactification of Teichmuller space resemble Kleinian
groups acting on the compactified hyperbolic space. This has important consequences, for
example, for the geometry of surface bundles [43, 73, 66]. The study of actions of subgroups on
other character varieties is largely unexplored and is an important direction of future research.

3.7. Affine, projective and flat Lorentzian structures. Many of the surface group rep-
resentations arise from the study of flat connections on manifolds. Indeed, RP2-structures are
just flat normal projective connections, and the basic problem of intepreting special represen-
tations in terms of geometric structures can be formulated gauge-theoretically. In particular
many of the surface group representations into Sp(4, R) discussed by Guichard-Wienhard [65],
Gothen [61], GarciaPrada-Gothen-Mundet [20] and Bradlow-GarciaPrada-Gothen [19] corre-
spond to RP3-structures on 3-manifolds with a natural contact geometry.
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These symplectic representations also correspond to geometric structures modelled on the
Einstein universe, a homogeneous space of Sp(4, R), which appears simultaneously as the confor-
mal compactification of flat Minkowski (2+1)-space, the boundary of anti-de Sitter 3+1-space
and the Grassmannian of Lagrangian 2-planes in a 4-dimensional real symplectic vector space.
Many of the special representations of surface groups also give rise to flat conformal Lorentzian
3-manifolds. See [6] for a description of the associated synthetic geometry.

Flat Lorentzian 3-manifolds arise from a much different context. The Bieberbach classifi-
cation of Euclidean manifolds extends to a classification of complete affine manifolds, that is,
closed manifolds with a geodesically complete flat torsionfree affine connection. In 1960, L. Aus-
lander (incorrectly) claimed that such a manifold would necessarily have virtually polycyclic
fundamental group. In 1977, Milnor asked whether Auslander’s (still unproven) claim would
be valid even without the assumption of compactness. Trying to prove Milnor’s conjecture,
Margulis [82] found counterexamples: free groups acting properly by affine transformations on
R

3. Such manifolds have natural flat Lorentz metrics. In his 1990 doctoral thesis [41], Todd
Drumm found a geometric construction for this unexpected phenomenon.

By Fried-Goldman [49] the compact complete affine 3-manifolds were easily classified, but,
due to the examples of Margulis-Drumm, the classification is lacking in the noncompact case.
Recent progress by Charette, Drumm, Goldman, Labourie and Margulis ([29, 58]) suggests that
the classification of all complete affine 3-manifolds with finitely generated fundamental group
is imminent. The examples with nonsolvable fundamental group are conjecturally open solid
handlebodies; this is equivalent to tameness (section 3.1).

This opens up many research directions: can a closed surface group admit a proper affine
deformation in higher dimension? How do these isometrically flat spacetimes fit inside the
space of conformally flat Lorentzian 3-dimensional manifolds? The geodesic flows on these flat
spacetimes also provide new examples of dynamical systems closely related to the geodesic flows
on associated hyperbolic surfaces. The relationship between geodesically complete flat affine
manifolds in dimension 3 and complete hyperbolic 2-manifolds seems particularly striking.

3.8. AdS manifolds in dimension 3. In a seminal paper written in 1990, Geoff Mess [85]
analyzed a class of 3-dimensional Anti-deSitter manifolds that are diffeomorphic to a compact
surface Σ crossed with R. He found a remarkable analogy between them and their hyperbolic
counterparts, quasi-Fuchsian manifolds. As in the hyperbolic case, they are parametrized by a
pair of conformal structures on Σ; in this case the parametrization comes from the identification
of a component of the group of AdS isometries with PSL(2, R)×PSL(2, R) rather than structures
at infinity. Furthermore, like a quasi-Fuchsian manifold, there is a compact convex core whose
boundary consists of a pair of hyperbolic surfaces , each “bent” along a geodesic lamination. In
the AdS, “bending” actually corresponds to “shearing” and using this Mess gave an AdS proof
of Thurston’s earthquake theorem that any two hyperbolic surfaces are connected by a unique
earthquake (which is a shearing map) along a geodesic lamination.

This provides a tantalizing analogy between hyperbolic and AdS geometry in both this special
case and for more general manifolds. For both the hyperbolic and the AdS structures there are
conjectures about the existence and uniqueness of structures that are bent along certain pairs
of laminations. Existence is known in the hyperbolic case, but uniqueness is only known is
special cases. Recently, Bonsante and Schlenker [15] have proved existence in the AdS context
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by mimicking arguments in the hyperbolic situation. The GEAR network is an ideal setting
for a project that investigates the hyperbolic and AdS conjectures simultaneously.

All closed AdS 3-manifolds are known to be Seifert fibered. Thus, it appears that AdS
geometry should be relevant to a rather small segment of 3-dimensional topology. However, if
one considers structures with singularities or on non-compact 3-manifolds, there are many more
examples. For example, the flat Lorentzian examples discussed in section 3.7, which correspond
to infinitesimal surface deformations, also lead to deformations into the space of AdS (and of
3-dimensional hyperbolic) structures.

3.9. Transitional geometry. “Transitional geometry” refers to the geometric description of a
family of structures whose holonomy representations pass between different Lie groups. Passing
from SL(2, R) into SL(2, C) is classical and has been discussed at length. Passing from SL(n, R)
to SL(n, C) plays a role in the study of Higgs bundles. One can ask whether various theories
like simultaneous uniformation, where complex representations correspond to a pair of real
representations, hold for Hitchin components of SL(n, R) representations.

Another interesting situation arises when hyperbolic structures degenerate to lower dimen-
sional structures, as occurs in Thurston’s hyperbolic Dehn surgery theory or in the proof of the
Orbifold theorem. For example a family of (possibly incomplete or singular) hyperbolic struc-
tures can degenerate to a single point in such a way that, if rescaled, it converges to a Euclidean
structure. Often the same Euclidean structure is the limit of a family of degenerating spherical
structures that have beenrescaled. Using the fact that the (orientation preserving) Euclidean
isometry group is isomorphic to SO(3) extended by translations, this can be interpreted as a
transition from SO(3, 1) to SO(4), passing through SO(3) (extended) ([99], [100]).

A similar situation occurs when 3-dimensional hyperbolic structures collapse down to a hy-
perbolic plane. The Lie group analogy in this case suggests that there should be a transition
from SO(3, 1) through SO(2, 1) (extended) to SO(2, 2), the AdS isometry group. Very recently
([35]), the theory of such a geometric transition has been developed. Certain hyperbolic geom-
etry tools such as gluing ideal tetrahedra carry through the transition. This leads to a whole
new class of interesting AdS structures and provides tools with which to study them.

For a closed hyperbolic 3-manifold (which has no 3-dimensional hyperbolic deformations)
one can ask if it can be deformed in H4; in other words does it have a nontrivial “quasi-
Fuchsian” representation. Similar questions can be asked about deformations through projective
structures or through complex hyperbolic structures. Nontrivial deformations seem to be quite
rare (Cooper-Long-Thistlethwaite [31]), but manifolds that do admit nontrivial deformations
are likely to be of particular interest. In such cases the character variety for representations
into a larger Lie group would provide information about 3-dimensional hyperbolic geometry.

3.10. Complex hyperbolic manifolds. In another direction is the emerging theory of com-
plex hyperbolic Kleinian groups. After the local rigidity theorems of Goldman [53] and Toledo [111],
there were many examples of discrete groups of isometries of H2

C
; see for example [101]. Recent

examples found by Deraux, Falbel, Paupert and Parker [39] of non-arithmetic lattices in U(2, 1)
were the first new examples since the original work of Deligne and Mostow in the 1980’s. An im-
portant basic problem is to determine the boundary of the set of quasi-Fuchsian representations
of π1(Σ) in SU(n, 1); recent partial results have been obtained by Parker and Will.

7



4. Summary

There are several themes that can be extracted from the above research developments and
that inform the organization of our network. Analytic problems, particularly those coming from
physics, often give rise to representation spaces, providing both motivation for their study and
insight into their properties. By associating geometric structures to particular types of represen-
tations, one can bring to bear many tools from topology. This is particularly true for structures
on low dimensional manifolds; it is then natural to look for higher dimensional analogs of tech-
niques constructions that prove useful in low dimensions. Utilizing dynamical systems, both
those derived from flows and from discrete group actions, in the study of representation varieties
can lead to deep conclusions. Conversely, such varieties often provide particularly interesting
examples of dynamical systems. There are often useful relationships between different types of
geometric structures and it can be valuable to look for analogous constructions in one case that
have been successfully used in another. This is particularly true for combinatorial objects and
invariants. These often arise from the degenerations or from asymptotic behavior.
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